Exogenous gamma-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings
文献类型: 外文期刊
作者: Song, Hongmiao 1 ; Xu, Xiangbin 2 ; Wang, Hua 1 ; Wang, Huizhong 2 ; Tao, Yuezhi 1 ;
作者机构: 1.Zhejiang Acad Agr Sci, Inst Crop & Nucl Technol Utilizat, Hangzhou 310021, Zhejiang, Peoples R China
2.Hangzhou Normal Univ, Key Lab Biochem & Mol Biol, Hangzhou 310036, Zhejiang, Peoples R China
关键词: oxidative damage;root growth;aluminium stress;antioxidant defence response;proton stress
期刊名称:JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE ( 影响因子:3.638; 五年影响因子:3.802 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: BACKGROUND: Proton (H+) and aluminium (Al3+) toxicities are major factors limiting crop production on acid soils, while gamma-aminobutyric acid (GABA) is a non-protein amino acid involved in various stress tolerances in plants. In this study, to determine whether exogenous GABA is functional in alleviating oxidative stress induced by H+ and Al3+ toxicities, the antioxidant defence response regulated by GABA was investigated in barley (Hordeum vulgare L.).RESULTS: After 24 h treatments of seedlings under H+, Al3+ and combined stresses with and without GABA, morphological and biochemical assays were conducted. It was observed that the inhibition of seedling root elongation caused by Al3+ and H+ toxicities was significantly mitigated by GABA. The amount of carbonylated proteins with molecular masses of 14.4-97 kDa was decreased. The activities of antioxidant enzymes were enhanced, the content of malondialdehyde was reduced and the accumulation of reactive oxygen species (ROS), as shown by staining roots with nitroblue tetrazolium, declined in GABA-treated seedlings.CONCLUSION: GABA can alleviate oxidative damage caused by H+ and Al3+ toxicities in barley seedlings by activating antioxidant defence responses and reducing the elevated levels of carbonylated proteins caused by ROS. (C) 2010 Society of Chemical Industry
- 相关文献
作者其他论文 更多>>
-
A lipoxygenase gene modulates jasmonate biosynthesis to enhance blast resistance in rice
作者:Wang, Lanlan;Deng, Fan;Gong, Xue;Wu, Gengwei;Zhang, Chi;Wang, Hua;Chen, Yumeng;Jin, Gaochen;Li, Ran;Deng, Fan
关键词:13-Lipoxygenase; jasmonic acid (JA); Magnaporthe oryzae; MYC2 transcription factor; rice; rice blast resistance
-
The Effect of Rhizophagus intraradices on Cadmium Uptake and OsNRAMP5 Gene Expression in Rice
作者:Bao, Xiaoqi;Zhang, Quan;Bao, Xiaoqi;Liu, Junli;Qiu, Gaoyang;Chen, Xiaodong;Zhang, Junbo;Guo, Bin;Wang, Hua
关键词:arbuscular mycorrhizal fungi; cadmium; uptake;
OsNRAMP5 ; rice -
Metabolomics and Spatial Distribution Analysis in Characterizing Rice Varieties for Huangjiu
作者:Li, Linying;Xu, Zelong;He, Yuqing;Zhang, Xueying;Zhang, Chi;Zhao, Yao;Hong, Gaojie;Wang, Hua;He, Yuqing;Zeng, Dali
关键词:Huangjiubrewing; rice; small-molecule substances; mass spectrometry imaging
-
The mutation in the critical sterility-inducing temperature-regulating gene OsTMS5 and OsCSIT1 enhances cadmium tolerance in rice seedlings
作者:Wang, Tao;He, Yi;Wang, Tao;He, Yi;Deng, Fan;Gong, Xue;Wu, Gengwei;Wang, Lanlan;Zhang, Chi;Wang, Hua;Shen, Renfang;Zhu, Xiaofang;Huang, Jiu;Wang, Feng
关键词:Cadmium;
OsCSIT1 ; Rice -
Identification of a Novel Glycosyl Transferase Family 17 Protein Involved in Cd Accumulation in Rice (Oryza sativa)
作者:Gao, Yong Qiang;Li, Su;Wang, Hao Yu;Shan, Chuan Jin;Zheng, Lu;Shen, Ren Fang;Zhu, Xiao Fang;Gao, Yong Qiang;Huang, Jiu;Wang, Hao Yu;Shan, Chuan Jin;Tian, Ceng Ceng;Zhang, Jing Kun;Zhang, Yi Fan;Zeng, Da Li;Wang, Hua
关键词:cadmium (cd); glycosyltransferases (GTs);
Os ss-glu ; rice -
Spatial metabolomics reveals the phytochemical basis of color variation and antioxidant capacity in quinoa (Chenopodium quinoa Willd.) varieties
作者:Xu, Zelong;Chen, Chaomin;Zeng, Dali;Hong, Gaojie;Peng, Chunlan;Wang, Hua;He, Yuqing;Zhang, Xueying;Li, Linying;Hong, Gaojie;He, Yuqing;He, Xuanyu
关键词:Quinoa; Small-molecule substances; Antioxidant capacity; Spatial distribution
-
Rhizosphere inoculation of PGPR strain Bacillus cereus BC56 enhances salt tolerance of cucumber
作者:Song, Hanru;Wang, Huasen;Wu, Gengwei;Huang, Ruizhi;Gong, Xue;Wang, Hua
关键词:PGPR; B. cereus BC56; Salt tolerance; Cucumber; RNA-seq



