VEG-MMKG: Multimodal knowledge graph construction for vegetables based on pre-trained model extraction
文献类型: 外文期刊
作者: Lv, Bowen 1 ; Wu, Huarui 1 ; Chen, Wenbai 2 ; Chen, Cheng 1 ; Miao, Yisheng 1 ; Zhao, Chunjiang 1 ;
作者机构: 1.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
2.Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100192, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
4.Minist Agr & Rural Affairs, Key Lab Digital Village Technol, Beijing 100097, Peoples R China
关键词: Knowledge graph; Multimodal fusion; Image-text pairs; Pre-trained model
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.9; 五年影响因子:9.3 )
ISSN: 0168-1699
年卷期: 2024 年 226 卷
页码:
收录情况: SCI
摘要: Knowledge graph technology is of great significance to modern agricultural information management and datadriven decision support. However, agricultural knowledge is rich in types, and agricultural knowledge graph databases built only based on text are not conducive to users' intuitive perception and comprehensive understanding of knowledge. In view of this, this paper proposes a solution to extract knowledge and construct an agricultural multimodal knowledge graph using a pre-trained language model. This paper takes two plants, cabbage and corn, as research objects. First, a text-image collaborative representation learning method with a two-stream structure is adopted to combine the image modal information of vegetables with the text modal information, and the correlation and complementarity between the two types of information are used to achieve entity alignment. In addition, in order to solve the problem of high similarity of vegetable entities in small categories, a cross-modal fine-grained contrastive learning method is introduced, and the problem of insufficient semantic association between modalities is solved by contrastive learning of vocabulary and small areas of images. Finally, a visual multimodal knowledge graph user interface is constructed using the results of image and text matching. Experimental results show that the image and text matching efficiency of the fine-tuned pretrained model on the vegetable dataset is 76.7%, and appropriate images can be matched for text entities. The constructed visual multimodal knowledge graph database allows users to query and filter knowledge according to their needs, providing assistance for subsequent research on various applications in specific fields such as multimodal agricultural intelligent question and answer, crop pest and disease identification, and agricultural product recommendations.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding
-
Water phase distribution and its dependence on internal structure in soaking maize kernels: a study using low-field nuclear magnetic resonance and X-ray micro-computed tomography
作者:Wang, Baiyan;Zhao, Chunjiang;Wang, Baiyan;Gu, Shenghao;Wang, Juan;Wang, Guangtao;Guo, Xinyu;Zhao, Chunjiang
关键词:phenotyping; hydration; water absorption; seed emergence; kernel moisture



