Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities
文献类型: 外文期刊
作者: Wei, Yuquan 1 ; Wu, Di 1 ; Wei, Dan 4 ; Zhao, Yue 1 ; Wu, Junqiu 1 ; Xie, Xinyu 1 ; Zhang, Ruju 1 ; Wei, Zimin 1 ;
作者机构: 1.Northeast Agr Univ, Coll Life Sci, Harbin 150030, Heilongjiang, Peoples R China
2.Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
3.Tsinghua Univ, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
4.Beijing Acad Agr & Forestry Sci, Inst Plant Nutr & Resources, Beijing 100012, Peoples R China
关键词: Composting; Agriculture straw; Actinomycetes inoculation; Lignocellulose degradation; Enzyme activities
期刊名称:BIORESOURCE TECHNOLOGY ( 影响因子:9.642; 五年影响因子:9.237 )
ISSN: 0960-8524
年卷期: 2019 年 271 卷
页码:
收录情况: SCI
摘要: This study was conducted to assess the effect of thermophilic actinomycetes inoculation on the lignocellulose degradation, enzyme activities and microbial community during different types of straw composting from wheat, rice, corn and soybean. The results showed that actinomycetes inoculation not only changed the structure of actinomycetic and bacterial community but also accelerated the degradation of cellulose, hemicellulose and lignin and increased the key enzymes activities including CMCase, Xylanase, manganese peroxidase, lignin peroxidase and laccase during composting particularly from wheat straw and rice straw. The key enzyme and physiochemical parameters which affected organic fractions degradation have been identified by redundancy analysis. The combined application of actinomycete inoculation and urea addition as a source of nitrogen was suggested to regulate the key enzyme activities and lignocellulose degradation, which lays a foundation for effectively managing organic wastes from different types of crop straws by composting.
- 相关文献
作者其他论文 更多>>
-
Bacteria Affect the Distribution of Soil-Dissolved Organic Matter on the Slope: A Long-Term Experiment in Black Soil Erosion
作者:Cai, Shanshan;Wang, Wei;Sun, Lei;Li, Yumei;Sun, Zhiling;Gao, Zhongchao;Zhang, Jiuming;Cai, Shanshan;Li, Yan;Wei, Dan
关键词:dissolved organic matter; black soil; slope; bacteria; fluorescence spectrum
-
Analysis of spatiotemporal land use change characteristics in the upper watershed area of the Qingshui River basin from 1990 to 2020
作者:Wang, Lei;Wang, Na;Pang, Min;Zhang, Qing;Wei, Dan;Li, Yan;An, Zhizhuang;Jin, Liang;Wang, Lei;Wang, Na;Pang, Min
关键词:Qingshui River basin; LULC; transfer matrix; redundancy analysis; driving factors
-
Rainfall Runoff and Nitrogen Loss Characteristics on the Miyun Reservoir Slope
作者:Wang, Na;Wang, Lei;Wu, Jiajun;Pang, Min;Yang, Zhixin;Xie, Jianzhi;Wang, Na;Wang, Lei;Jin, Liang;Pang, Min;Wei, Dan;Li, Yan;Wang, Junqiang;Xu, Ting
关键词:rain intensity; slope gradient; runoff; total nitrogen
-
Partial substitution of manure increases N2O emissions in the alkaline soil but not acidic soils
作者:Li, Haoruo;Li, Yuyi;Li, Haoruo;Song, Xiaotong;Wu, Di;Wei, Dan;Ju, Xiaotang
关键词:Nitrous oxide (N2O); Manure; Soil pH; Nitrification inhibitor; Microcosm experiment
-
Digestate induces significantly higher N2O emission compared to urea under different soil properties and moisture
作者:Li, Haoruo;Li, Haoruo;Wu, Di;Song, Xiaotong;Wei, Dan;Ju, Xiaotang
关键词:Nitrous oxide; Digestate; Urea; Soil properties; Soil moisture; Nitrification inhibitor
-
Different long-term fertilization regimes affect soil protists and their top-down control on bacterial and fungal communities in Mollisols
作者:Hu, Xiaojing;Gu, Haidong;Liu, Junjie;Jin, Jian;Wang, Guanghua;Wei, Dan;Zhou, Baoku;Chen, Xueli;Zhu, Ping;Cui, Xi'an;Wei, Dan;Wang, Guanghua
关键词:Fertilization; Protistan community; Functional group; Inter-kingdom interactions; Mollisols
-
Transformation and Sequestration of Total Organic Carbon in Black Soil under Different Fertilization Regimes with Straw Carbon Inputs
作者:Zhang, Jiuming;Yuan, Jiahui;Zhu, Yingxue;Kuang, Enjun;Chi, Fengqin;Liu, Jie;Han, Jiaye;Shi, Yanxiang;Wei, Dan
关键词:black soil; long-term fertilization; straw returning; SOC; carbon storage



