Long-term evaluation of soluble solids content of apples with biological variability by using near-infrared spectroscopy and calibration transfer method
文献类型: 外文期刊
作者: Fan, Shuxiang 1 ; Li, Jiangbo 1 ; Xia, Yu 1 ; Tian, Xi 1 ; Guo, Zhiming 4 ; Huang, Wenqian 1 ;
作者机构: 1.Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
2.Natl Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
3.Minist Agr, Key Lab Agriinformat, Beijing 100097, Peoples R China
4.Jiangsu Uni
关键词: Soluble solids content; NIR; Apple; Biological variability; Partial least squares; Calibration transfer
期刊名称:POSTHARVEST BIOLOGY AND TECHNOLOGY ( 影响因子:5.537; 五年影响因子:5.821 )
ISSN: 0925-5214
年卷期: 2019 年 151 卷
页码:
收录情况: SCI
摘要: The long-term performance of a near-infrared (NIR) calibration model for soluble solids content (SSC) prediction has been investigated using apples with biological variability collected from 2012 to 2018. The NIR spectrum in the range of 4000-10,000 cm(-1) was acquired around equator position for each sample. Partial least squares (PLS) was used to develop calibration model based on the samples harvested in 2012 and 2013. The model was then applied to predict the SSC of samples in five separate data sets collected from 2014 to 2018, resulting in a lower performance with higher RMSEP values in the range of 0.704-1.716%. After applying the slope and bias (S/B) correction method, ten samples were selected from each prediction set and used to adjust the model; the prediction results for five independent prediction sets were improved, with RMSEP values ranging from 0.501% to 0.654%. Subsequently, competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) methods were used to select the most effective wavelengths for the determination of SSC. The calibration model built with 15 wavelengths, combined with the S/B correction method, could replace the full spectral range to detect the SSC of apples over a long period of time, with R-p and RMSEP for five prediction sets being 0.919, 0.937, 0.908, 0.896, 0.924 and 0.592, 0.637, 0.513, 0.523, 0.500%, respectively. Overall, the proposed method in this study could make the model valid and robust over a long time and make the biological variability a negligible interference for SSC prediction, thereby providing potential for SSC prediction in practical application.
- 相关文献
作者其他论文 更多>>
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
Online detection of lycopene content in the two cultivars of tomatoes by multi-point full transmission Vis-NIR spectroscopy
作者:Li, Sheng;Wang, Qingyan;Shi, Ruiyao;Li, Jiangbo;Li, Sheng;Yang, Xuhai;Zhang, Qian
关键词:Tomato quality; Nondestructive evaluation; Chemometrics; Least angle regression; Model optimization
-
Detection of Insect-Damaged Maize Seed Using Hyperspectral Imaging and Hybrid 1D-CNN-BiLSTM Model
作者:Wang, Zheli;Chen, Liping;Wang, Zheli;Fan, Shuxiang;An, Ting;Zhang, Chi;Chen, Liping;Huang, Wenqian
关键词:Maize seed; Insect infestation; Hyperspectral imaging; Deep learning; BiLSTM
-
Non-destructive detection of single corn seed vigor based on visible/ near-infrared spatially resolved spectroscopy combined with chemometrics
作者:Liu, Wenxi;Luo, Bin;Kang, Kai;Zhang, Han;Liu, Wenxi;Xia, Yu
关键词:Seed vigor; Visible-near infrared; Spatially resolved technique; Spectral ratio method; Single kernel corn
-
Detection of early decayed oranges by using hyperspectral transmittance imaging and visual coding techniques coupled with an improved deep learning model
作者:Cai, Letian;Zhang, Yizhi;Shi, Ruiyao;Li, Xuetong;Li, Jiangbo;Cai, Letian;Zhang, Junyi;Diao, Zhihua
关键词:Citrus decay detection; Sample expansion; Spectral visual encoding; Improved deep learning; Model optimization
-
Identification of mould varieties infecting maize kernels based on Raman hyperspectral imaging technique combined with multi-channel residual module convolutional neural network
作者:Long, Yuan;Tang, Xiuying;Zhang, Bin;Long, Yuan;Fan, Shuxiang;Zhang, Chi;Huang, Wenqian;Long, Yuan;Fan, Shuxiang;Zhang, Chi;Huang, Wenqian
关键词:Raman hyperspectral imaging; Maize kernels; Mould varieties; Residual unit; Nondestructive detection
-
Principles, developments, and applications of spatially resolved spectroscopy in agriculture: a review
作者:Xia, Yu;Liu, Wenxi;Meng, Jingwu;Hu, Jinghao;Liu, Wenbo;Kang, Jie;Tang, Wei;Liu, Wenxi;Luo, Bin;Zhang, Han
关键词:spatially resolved spectroscopy; optical properties; quality inspection; agriculture; hyperspectral imaging



