文献类型: 外文期刊
作者: Zheng, Wengang 1 ; Zheng, Kai 1 ; Gao, Lutao 3 ; Zhangzhong, Lili 2 ; Lan, Renping 2 ; Xu, Linlin 5 ; Yu, Jingxin 2 ;
作者机构: 1.Shanxi Agr Univ, Coll Agr Engn, Jinzhong 030801, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Intelligent Equipment Res Ctr, Beijing 100097, Peoples R China
3.Yunnan Agr Univ, Sch Big Data, Kunming 650201, Peoples R China
4.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
5.Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
关键词: GRU; transformer; soil moisture content; deep learning
期刊名称:AGRONOMY-BASEL ( 影响因子:3.7; 五年影响因子:4.0 )
ISSN:
年卷期: 2024 年 14 卷 3 期
页码:
收录情况: SCI
摘要: The accurate measurement of soil moisture content emerges as a critical parameter within the ambit of agricultural irrigation management, wherein the precise prediction of this variable plays an instrumental role in enhancing the efficiency and conservation of agricultural water resources. This study introduces an innovative, cutting-edge hybrid model that ingeniously integrates Gated Recirculation Unit (GRU) and Transformer technologies, meticulously crafted to amplify the precision and reliability of soil moisture content forecasts. Leveraging meteorological and soil moisture datasets amassed from eight monitoring stations in Hebei Province, China, over the period from 2011 to 2018, this investigation thoroughly assesses the model's efficacy against a diverse array of input variables and forecast durations. This assessment is concurrently contrasted with a range of conventional machine learning and deep learning frameworks. The results demonstrate that (1) the GRU-Transformer model exhibits remarkable superiority across various aspects, particularly in short-term projections (1- to 2-day latency). The model's mean square error (MSE) for a 1-day forecast is notably low at 5.22%, reducing further to a significant 2.71%, while the mean coefficient of determination (R2) reaches a high of 89.92%. Despite a gradual increase in predictive error over extended forecast periods, the model consistently maintains robust performance. Moreover, the model shows exceptional versatility in managing different soil depths, notably excelling in predicting moisture levels at greater depths, thereby surpassing its performance in shallower soils. (2) The model's predictive error inversely correlates with the reduction in parameters. Remarkably, with a streamlined set of just six soil moisture content parameters, the model predicts an average MSE of 0.59% and an R2 of 98.86% for a three-day forecast, highlighting its resilience to varied parameter configurations. (3) In juxtaposition with prevalent models such as Support Vector Regression (SVR), K-Nearest Neighbors (KNN), Gradient Boosting Decision Tree (GBDT), XGBoost, Random Forest, and deep learning models like Deep Neural Network (DNN), Convolutional Neural Network (CNN), and standalone GRU-branch and Transformer-branch models, the GRU-Transformer framework demonstrates a significant advantage in predicting soil moisture content with enhanced precision for a five-day forecast. This underscores its exceptional capacity to navigate the intricacies of soil moisture data. This research not only provides a potent decision-support tool for agricultural irrigation planning but also makes a substantial contribution to the field of water resource conservation and optimization in agriculture, while concurrently imparting novel insights into the application of deep learning techniques in the spheres of agricultural and environmental sciences.
- 相关文献
作者其他论文 更多>>
-
A dual deep learning approach for winter temperature prediction in solar greenhouses in Northern China
作者:Yu, Jingxin;Zhang, Ruochen;Zheng, Wengang;Wei, Xiaoming;Yu, Jingxin;Sun, Congcong;Yu, Jingxin;Zhao, Jinpeng;Zhang, Ruochen;Zheng, Wengang;Wei, Xiaoming;Zhao, Jinpeng;Xu, Linlin
关键词:Winter temperature prediction; Solar greenhouse; Northern china; Dual deep learning; Optimal cultivation
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model
-
Performance of a greenhouse heating system utilizing energy transfer between greenhouses based on the dual source heat pump
作者:Zhou, Baochang;Qu, Mei;Zhou, Baochang;Sun, Weituo;Guo, Wenzhong;Zheng, Wengang
关键词:Greenhouse heating; Surplus air heat; Heat pump; Energy transfer; Multi-span greenhouse
-
Water utilization strategy of tomato grown on east-west orientation in solar greenhouses revealed based on hydroxide isotopes
作者:Han, Furong;Zhangzhong, Lili;Zheng, Wengang;Li, Jingjing;Shi, Kaili;Han, Furong;Wei, Yibo
关键词:Environmental differences; PAR; Soil water content; IsoSource model; Soil water contribution rate; Ridges difference
-
Machine vision-based detection of key traits in shiitake mushroom caps
作者:Zhao, Jiuxiao;Zheng, Wengang;Wei, Yibo;Zhao, Qian;Dong, Jing;Zhang, Xin;Wang, Mingfei;Zhao, Jiuxiao;Zheng, Wengang;Wei, Yibo;Zhao, Qian;Dong, Jing;Zhang, Xin;Wang, Mingfei
关键词:shiitake mushroom breeding; edge detection; machine learning; OpenCV model; phenotypic key features
-
Analysis of Irrigation, Crop Growth and Physiological Information in Substrate Cultivation Using an Intelligent Weighing System
作者:Xu, Jiu;Xu, Jiu;Zhangzhong, Lili;Lu, Peng;Wang, Yihan;Zhao, Qian;Li, Youli;Wang, Lichun
关键词:irrigation volume; evapotranspiration; stomatal conductance; plant weight variability; precision irrigation control; protected agriculture
-
Hyperspectral estimation of chlorophyll content in grapevine based on feature selection and GA-BP
作者:Li, Yafeng;Xu, Xingang;Wu, Wenbiao;Jiang, Xiangtai;Meng, Yang;Yang, Guijun;Xue, Hanyu;Li, Yafeng;Xu, Xingang;Zhu, Yaohui;Gao, Lutao
关键词:Data preprocessing; Feature selection; Machine learning; Hyperspectral monitoring.



