A Vegetable Leaf Disease Identification Model Based on Image-Text Cross-Modal Feature Fusion
文献类型: 外文期刊
作者: Feng, Xuguang 1 ; Zhao, Chunjiang 2 ; Wang, Chunshan 1 ; Wu, Huarui 2 ; Miao, Yisheng 2 ; Zhang, Jingjian 5 ;
作者机构: 1.Hebei Agr Univ, Sch Informat Sci & Technol, Baoding, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing, Peoples R China
3.Minist Agr & Rural Affairs Peoples Republ China, Agr Key Lab Digital Village, Beijing, Peoples R China
4.Hebei Key Lab Agr Big Data, Baoding, Peoples R China
5.Cangzhou Acad Agr & Forestry Sci, Cangzhou, Peoples R China
关键词: cross-modal fusion; transformer; few-shot; complex background; disease identification
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )
ISSN: 1664-462X
年卷期: 2022 年 13 卷
页码:
收录情况: SCI
摘要: In view of the differences in appearance and the complex backgrounds of crop diseases, automatic identification of field diseases is an extremely challenging topic in smart agriculture. To address this challenge, a popular approach is to design a Deep Convolutional Neural Network (DCNN) model that extracts visual disease features in the images and then identifies the diseases based on the extracted features. This approach performs well under simple background conditions, but has low accuracy and poor robustness under complex backgrounds. In this paper, an end-to-end disease identification model composed of a disease-spot region detector and a disease classifier (YOLOv5s + BiCMT) was proposed. Specifically, the YOLOv5s network was used to detect the disease-spot regions so as to provide a regional attention mechanism to facilitate the disease identification task of the classifier. For the classifier, a Bidirectional Cross-Modal Transformer (BiCMT) model combining the image and text modal information was constructed, which utilizes the correlation and complementarity between the features of the two modalities to achieve the fusion and recognition of disease features. Meanwhile, the problem of inconsistent lengths among different modal data sequences was solved. Eventually, the YOLOv5s + BiCMT model achieved the optimal results on a small dataset. Its Accuracy, Precision, Sensitivity, and Specificity reached 99.23, 97.37, 97.54, and 99.54%, respectively. This paper proves that the bidirectional cross-modal feature fusion by combining disease images and texts is an effective method to identify vegetable diseases in field environments.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding
-
Water phase distribution and its dependence on internal structure in soaking maize kernels: a study using low-field nuclear magnetic resonance and X-ray micro-computed tomography
作者:Wang, Baiyan;Zhao, Chunjiang;Wang, Baiyan;Gu, Shenghao;Wang, Juan;Wang, Guangtao;Guo, Xinyu;Zhao, Chunjiang
关键词:phenotyping; hydration; water absorption; seed emergence; kernel moisture



