Ensuring future agricultural sustainability in China utilizing an observationally validated nutrient recommendation approach
文献类型: 外文期刊
作者: He, Ping 1 ; Xu, Xinpeng 1 ; Zhou, Wei 1 ; Smith, Ward 2 ; He, Wentian 3 ; Grant, Brian 2 ; Ding, Wencheng 1 ; Qiu, Shaojun 1 ; Zhao, Shicheng 1 ;
作者机构: 1.Chinese Acad Agr Sci CAAS, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
2.Agr & Agri Food Canada, Ottawa Res & Dev Ctr, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
3.Beijing Acad Agr & Forestry Sci, Inst Plant Nutr & Resources, Beijing 100097, PR, Peoples R China
关键词: Nutrient expert; Sustainability; Nitrogen efficiency; Nitrogen losses; Greenhouse gas emissions; Crop yields; Profitability
期刊名称:EUROPEAN JOURNAL OF AGRONOMY ( 影响因子:5.722; 五年影响因子:6.384 )
ISSN: 1161-0301
年卷期: 2022 年 132 卷
页码:
收录情况: SCI
摘要: Fertilizer has revolutionized crop production, but a lack of evidence-based fertilizer usage has resulted in negative economic and environmental ramifications, particularly for smallholder farmers. This study aimed at developing an innovative nutrient recommendation approach, Nutrient Expert (NE), for improving yields of maize, wheat, and rice while optimizing fertilizer input through adoption of 4R (applying the right source of nutrients at the right rate, time and place) nutrient stewardship technologies, and evaluating the large-scale performance on crop productivity and the environmental impact of cropping systems. Thus, we compared NE to current farmers' practice (FP) and soil test-based fertilizer application (ST) for 1,534 farm field experiments in order to validate the benefits of NE on both crop productivity and environmental protection in the main cereal production areas in China. Overall, the NE treatment achieved 4.4 % higher grain yield and 5.8 % more profit over FP, more yield for rice, but no differences for maize and wheat over ST. Nutrient Expert required 29.0 % and 14.7 % less fertilizer N than FP and ST, respectively. The NE recommendations improved the nitrogen (N) recovery efficiency by 10.8-13.4 percent points over FP across the 1,534 sites. Using the NE approach, on average, reactive N losses and greenhouse gas (GHG) emissions were reduced by 36.2 % and 21.5 % over FP, 16.0 % and 9.9 % over ST, respectively. The NE, as a user-friendly tool, is widely applicable across farm types and climatic regions. It could be beneficial for improving fertilizer use efficiency and maintaining strategic food security for smallholder production areas in China where N fertilizer is inappropriate and usually over applied. This approach could potentially be expanded to help reduce N losses and GHG emissions in other regions globally.
- 相关文献
作者其他论文 更多>>
-
Optimized Nitrogen Fertilization Promoted Soil Organic Carbon Accumulation by Increasing Microbial Necromass Carbon in Potato Continuous Cropping Field
作者:Lv, Huidan;He, Ping;Zhao, Shicheng;Lv, Huidan;He, Ping;Zhao, Shicheng;Lv, Huidan;He, Ping;Zhao, Shicheng
关键词:nutrient expert; soil organic carbon fraction; microbial residue carbon; soil enzyme activity; optimizing fertilization
-
Response of soil microbial properties in the life cycle of potatoes to organic substitution regimes in North China
作者:Wang, Xiya;Zhao, Shicheng;Xu, Xinpeng;Liu, Mengjiao;He, Ping;Zhou, Wei;Wang, Xiya;Zhao, Shicheng;Xu, Xinpeng;Liu, Mengjiao;He, Ping;Zhou, Wei;Jiang, Rong;Zhang, Jun;Duan, Yu;He, Ping;Zhou, Wei
关键词:Organic substitution regime; Potato growth period; Soil chemistry properties; Soil microbial diversity; Soil microbial network
-
Research on quantitative detection technology of raccoon-derived ingredient adulteration in sausage products
作者:Wang, Hui;Chen, Chen;Xie, Mengying;Zhang, Yan;Chen, Boxu;Li, Yongyan;Zhou, Wei;Jia, Wenshen;Chen, Jia;Chen, Jia;Zhou, Wei
关键词:droplet digital PCR; quantitative study; raccoon; sausage adulteration
-
Modelling adaptation measures to improve maize production and reduce soil N2O emissions under climate change in Northeast China
作者:Fan, Daijia;Song, Daping;Jiang, Rong;Shi, Yaoyao;Zou, Guoyuan;He, Wentian;He, Ping;Pan, Zhaolong
关键词:Maize yield; N 2 O emissions; DNDC model; Climate change; Adaptation strategies
-
Organic substitution regime with optimized irrigation improves potato water and nitrogen use efficiency by regulating soil chemical properties rather than microflora structure
作者:Wang, Xiya;Yang, Binggeng;Zhao, Shicheng;Liu, Mengjiao;Xu, Xinpeng;He, Ping;Zhou, Wei;Wang, Xiya;Zhao, Shicheng;Liu, Mengjiao;Xu, Xinpeng;He, Ping;Zhou, Wei;Jiang, Lingling;Jiang, Rong;Zhang, Jun;Duan, Yu
关键词:Water-nitrogen coupling; Water use efficiency; Nitrogen use efficiency; Soil chemical properties; Soil microflora structure
-
Global impact of enhanced-efficiency fertilizers on vegetable productivity and reactive nitrogen losses
作者:Pan, Zhaolong;He, Ping;Song, Lei;Zhou, Wei;Pan, Zhaolong;Fan, Daijia;Jiang, Rong;Song, Daping;He, Wentian
关键词:Vegetable system; Enhanced-efficiency fertilizers; Nitrification inhibitor; Polymer-coated urea; Reactive nitrogen lose
-
Synergistic Effects of Soil-Based Irrigation and Manure Substitution for Partial Chemical Fertilizer on Potato Productivity and Profitability in Semiarid Northern China
作者:Jiang, Lingling;Zhang, Xia;Yang, Yi;Jiang, Rong;He, Ping;Xu, Xinpeng;Xie, Hanyou;Wang, Xiya;Wu, Qiying;Huang, Shaohui
关键词:potato; irrigation water; manure substitution; comprehensive evaluation



