文献类型: 外文期刊
作者: Mao, Dianhui 1 ; Zhang, Denghui 1 ; Wang, Xuesen 1 ; Lv, Dongdong 1 ; Wu, Jianwei 3 ; Chen, Junhua 5 ;
作者机构: 1.Beijing Technol & Business Univ, Beijing Key Lab Big Data Technol Food Safety Comp, Beijing, Peoples R China
2.Beijing Technol & Business Univ, Natl Engn Lab Agri Prod Qual Traceabil, Beijing, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing, Peoples R China
4.Beijing PAIDE Sci & Technol Dev Co Ltd, Beijing, Peoples R China
5.China Natl Inst Standardizat, Standardizat Theory & Strategy, Beijing, Peoples R China
关键词: Banana defect recognition; Banana appearance grading; CustomPAN; DIoULoss; PPYOLOE plus
期刊名称:APPLIED ENGINEERING IN AGRICULTURE ( 影响因子:0.9; 五年影响因子:1.1 )
ISSN: 0883-8542
年卷期: 2023 年 39 卷 5 期
页码:
收录情况: SCI
摘要: . With the development of the fruit individual packaging industry, the appearance quality of individually packaged fruits has put forward higher requirements. Due to the dense and uneven defects on the surface of bananas, the existing detection algorithms are prone to the problem of unrecognizable or degraded recognition accuracy. In this article, we propose an efficient banana surface defect detection model, the PPYOLO-Banana model. PPYOLO-Banana is based on the PPYOLOE+-m model with improved model structure and loss function, and the optimized CustomPAN can get more multilevel features, and compared with the original network PPYOLOE+-m model, the algorithm significantly improves the accuracy, with an average accuracy improvement of 2.2% (1.3% for the original image test set). mAP of PPYOLO-Banana is 97.0% (96.1% for the original image test set), which is 14.3% higher than the PPYOLOE model, and 10.9%, 8.9%, 8.9%, and 8.1% higher than the YOLOX, YOLOX-tiny, YOLOv5, and YOLOV4 models, respectively. The detection speed of the PPYOLO-Banana model is 17.71 frames per second, which is 2.95, 2.10, 1.90, and 0.98 times higher than that of YOLOv3, YOLOv4, YOLOX, and YOLOX-tiny, respectively. The results show that the proposed PPYOLO-Banana model achieves a balance between accuracy and speed in recognizing banana surface defects, improves the quality detection capability of individually packed fruits, it can effectively grade the quality of banana appearance, and has good potential to become an intelligent sorting machine.
- 相关文献
作者其他论文 更多>>
-
A hyperspectral band selection method based on sparse band attention network for maize seed variety identification
作者:Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Wu, Jianwei;Wu, Jianwei
关键词:Hyperspectral imaging; Band selection; Attention mechanism; Deep learning; Seed variety identification
-
Maize seed variety identification using hyperspectral imaging and self-supervised learning: A two-stage training approach without spectral preprocessing
作者:Zhang, Liu;Zhang, Shubin;Liu, Jincun;Wei, Yaoguang;An, Dong;Zhang, Liu;Zhang, Shubin;Liu, Jincun;Wei, Yaoguang;An, Dong;Zhang, Liu;Zhang, Shubin;Liu, Jincun;Wei, Yaoguang;An, Dong;Zhang, Liu;Zhang, Shubin;Liu, Jincun;Wei, Yaoguang;An, Dong;Wu, Jianwei;Wu, Jianwei
关键词:Seed classification; Hyperspectral imaging; Self-supervised learning; Deep learning; Spectral analysis
-
Using filter pruning-based deep learning algorithm for the real-time fruit freshness detection with edge processors
作者:Mao, DianHui;Zhang, DengHui;Sun, Hao;Mao, DianHui;Wu, JianWei;Wu, JianWei;Chen, JunHua
关键词:PP-YOLO Tiny; Ultra Lightweight; FPGM algorithm; Real-time detection; Fruit
-
Computer Vision-Based Measurement Techniques for Livestock Body Dimension and Weight: A Review
作者:Ma, Weihong;Qi, Xiangyu;Sun, Yi;Gao, Ronghua;Ding, Luyu;Wang, Rong;Peng, Cheng;Zhang, Jun;Wu, Jianwei;Xu, Zhankang;Li, Mingyu;Huang, Shudong;Li, Qifeng;Qi, Xiangyu;Zhao, Hongyan;Huang, Shudong
关键词:3D reconstruction; stressless body dimension measurement; visual weight estimation; precision livestock farming
-
Maize seed fraud detection based on hyperspectral imaging and one-class learning
作者:Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Wu, Jianwei;Wu, Jianwei
关键词:Fraud detection; Maize seeds; Hyperspectral imaging; One -class learning; Deep learning
-
Research on the joint event extraction method orientates food live e-commerce
作者:Mao, Dianhui;Liu, Yiming;Li, Ruixuan;Chen, Junhua;Hao, Yuanrong;Liu, Yiming;Chen, Junhua;Wu, Jianwei;Wu, Jianwei
关键词:Event Extraction; Ontology construction; Knowledge Graph; Food e -commerce live streaming
-
Development of an evapotranspiration estimation method for lettuce via mobile phones using machine vision: Proof of concept
作者:Zhangzhong, Lili;Gao, Hairong;Zheng, Wengang;Li, Jingjing;Wang, Dequn;Zhangzhong, Lili;Gao, Hairong;Zheng, Wengang;Li, Jingjing;Wang, Dequn;Wu, Jianwei
关键词:Image processing; Machine learning; Crop coefficient; Crop evapotranspiration