您好,欢迎访问中国热带农业科学院 机构知识库!

Inhibitory Activity on the Formation of Reactive Carbonyl Species in Edible Oil by Synthetic Polyphenol Antioxidants

文献类型: 外文期刊

作者: Lu, Yongling 1 ; Lu, Min 1 ; Wang, Jiaqi 1 ; Jiang, Xiaoyun 1 ; Lu, Yang 1 ; Qiu, Caiyi 1 ; Lv, Lishuang 1 ; Dong, Wenjia 1 ;

作者机构: 1.Nanjing Normal Univ, Sch Food Sci & Pharmaceut Engn, Dept Food Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China

2.Chinese Acad Trop Agr Sci, Spice & Beverage Res Inst, Wanning 571533, Hainan, Peoples R China

关键词: propyl gallate; tert-butylhydroquinone; acrolein; glyoxal; methylglyoxal; edible oil

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN: 0021-8561

年卷期: 2021 年 69 卷 32 期

页码:

收录情况: SCI

摘要: Food lipids play an important role in food quality, and their attributes contribute to texture, flavor, and nutrition. However, high-temperature processing leads to lipid peroxidation, degradation, and the formation of reactive carbonyl species (RCS), such as acrolein (ACR), glyoxal (GO), and methylglyoxal (MGO). We investigated the changes in the peroxidation value (POV), Rancimat induction time, formation and total amount of RCS, and inhibitory effects of synthetic polyphenol antioxidants on ACR/GO/MGO in plant oils during heating processing through an accelerated oxidation test using Rancimat. With increasing temperature and heating time, the amounts of ACR, GO, and MGO in oil increased and the level of ACR was about several times higher than that of GO and MGO. We also found that some amounts of ACR, GO, and MGO were produced at the initial stage before reaching the peak value of POV, even before oil oxidative rancidity, and the common antioxidant butyl hydroxyanisole (BHA)/butylated hydroxytoluene (BHT) could not remove them once they were generated. This is first time to purify PG-ACR-MGO and elucidate the structure based on analysis of their high resolution mass spectrometry and H-1, C-13, and two-dimensional nuclear magnetic resonance. We further found that PG rather than BHT and BHA efficiently trapped ACR, OG, and MGO to form adducts in oil and roasted beef burgers with corn oil. Additionally, after incubation at 80 degrees C, the trapping order of PG was as follows: ACR, MGO, and GO, and the adduct of PG-ACR was formed within 1 min; after 10 min, PG-MGO was generated; and three adducts formed at 15 min. However, PG could not trap ACR, GO, or MGO to form adducts at room temperature. This study provided novel knowledge to advance our understanding of the ability of synthetic polyphenol antioxidants to scavenge RCS simultaneously, such as ACR, MGO, and GO. Our findings demonstrated that PG, as an inhibitor of RCS, is suitable for medium-and high-temperature food processing but not for normal-temperature storage.

  • 相关文献
作者其他论文 更多>>