文献类型: 外文期刊
作者: Liu, Qing 1 ; Chen, Lei 1 ; Yuan, Yuan 1 ; Wu, Huarui 3 ;
作者机构: 1.Chinese Acad Sci, HFIPS, Inst Intelligent Machines, Hefei 230031, Peoples R China
2.Univ Sci & Technol China, Hefei 230026, Peoples R China
3.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
关键词: History; Decoding; Training; Predictive models; Postal services; Computational modeling; Vocabulary; Abstractive summarization; long summaries; history reuse; bag-of-words; word order deviation
期刊名称:IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING ( 影响因子:3.919; 五年影响因子:3.906 )
ISSN: 2329-9290
年卷期: 2021 年 29 卷
页码:
收录情况: SCI
摘要: Recurrent Neural Network (RNN) based abstractive text summarization models have made great progress over the past few years, largely triggered by the encoder-decoder architecture. However, there has been little work improving the generation of relatively long summaries. In this paper, we concentrate on two prominent problems in long summary generation. First, although significant efforts have been made to assist the encoder in handling long sequences, the decoder struggles with long sequences owing to the limited storage capacity of RNN. We propose a simple and effective approach called history reuse, which first mines critical information from the history summary sequence and then transmits the information to the decoder. Second, since encoder-decoder models are typically trained to produce exactly the same summary as the target summary, certain word order deviations between the predicted summary and target summary are excessively punished. Accordingly, we introduce a fully differentiable loss called bag-of-words (BoW) loss, which takes advantage of the feature of BoW discarding word order information in texts, and computes the difference between the two summaries at the BoW space. Experiments on two benchmark datasets, CNN/Daily Mail and Pubmed, demonstrate that our methods significantly improve the baseline.
- 相关文献
作者其他论文 更多>>
-
Eliminating Primacy Bias in Online Reinforcement Learning by Self-Distillation
作者:Li, Jingchen;Wu, Huarui;Zhao, Chunjiang;Shi, Haobin;Hwang, Kao-Shing
关键词:Online reinforcement learning; overfitting; reinforcement learning
-
Recognition Method of Cabbage Heads at Harvest Stage under Complex Background Based on Improved YOLOv8n
作者:Tian, Yongqiang;Zhang, Taihong;Zhao, Yunjie;Zhao, Chunjiang;Wu, Huarui;Zhang, Taihong;Zhao, Yunjie;Zhang, Taihong;Zhao, Yunjie;Wu, Huarui
关键词:cabbage; recognition and localization; object detection; deep learning; automatic harvesting
-
Cabbage Transplantation State Recognition Model Based on Modified YOLOv5-GFD
作者:Sun, Xiang;Miao, Yisheng;Wang, Yuansheng;Li, Qingxue;Zhu, Huaji;Wu, Huarui;Sun, Xiang;Miao, Yisheng;Wu, Xiaoyan;Wang, Yuansheng;Li, Qingxue;Zhu, Huaji;Wu, Huarui;Sun, Xiang;Miao, Yisheng;Wang, Yuansheng;Li, Qingxue;Zhu, Huaji;Wu, Huarui;Wu, Xiaoyan
关键词:the state of cabbage transplantation; target detection; deep separable convolution; YOLOv5s
-
A Study of Kale Recognition Based on Semantic Segmentation
作者:Wu, Huarui;Guo, Wang;Liu, Chang;Sun, Xiang;Wu, Huarui;Guo, Wang;Liu, Chang;Sun, Xiang;Wu, Huarui;Guo, Wang;Liu, Chang;Sun, Xiang
关键词:kale; semantic segmentation; Swin transformer; UperNet
-
Greenhouse light and CO2 regulation considering cost and photosynthesis rate using i-nsGA II
作者:Gao, Pan;Lu, Miao;Yang, Yongxia;Hu, Jin;Gao, Pan;Lu, Miao;Hu, Jin;Wu, Huarui;Mao, Hanping
关键词:Multi-objective optimization; Photosynthesis rate; Curvature theory; Environmental regulation; Regulation cost
-
Research on Positioning and Navigation System of Greenhouse Mobile Robot Based on Multi-Sensor Fusion
作者:Cheng, Bo;Li, Xiaoyue;Zhang, Ning;Song, Weitang;He, Xueying;Wu, Huarui
关键词:agricultural greenhouse; navigation robot; multi-sensor fusion; ultra-wideband; inertial measurement unit; odometry; rangefinder
-
Mangosteen extract reduces the bacterial load of eggshell and improves egg quality
作者:Zhu, Jianfei;Liu, Ying;Zhu, Jianfei;Liu, Qing;Wang, Yongqiang;Zhu, Kui;Guo, Jiangpeng;Jin, Yinji
关键词:Antibiotic substitute; Mangosteen extract; Bacteria inhibition; Egg quality enhancement; Microbial communities