文献类型: 外文期刊
作者: Wang, Mingfei 1 ; Zheng, Wengang 2 ; Zhao, Chunjiang 1 ; Chen, Yang 1 ; Chen, Chunling 1 ; Zhang, Xin 2 ;
作者机构: 1.Shenyang Agr Univ, Coll Informat & Elect Engn, Shenyang 110866, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Res Ctr Intelligent Equipment, Beijing 100097, Peoples R China
关键词: mushroom room; energy conservation; neural network; MPC
期刊名称:ENERGIES ( 影响因子:3.2; 五年影响因子:3.3 )
ISSN:
年卷期: 2023 年 16 卷 22 期
页码:
收录情况: SCI
摘要: The energy consumption of the mushroom room air conditioning system accounts for 40% of the total energy consumption of the mushroom factory. Efficient and energy-efficient mushroom factories and mushroom houses are the development direction of the industry. Compared with maintenance structure transformation and air conditioning equipment upgrading, energy-saving technology based on regulation methods has the advantages of less investment and fast effectiveness, which has attracted attention. The current methods for regulating air conditioning in edible mushroom factories include simple on/off thermostat control or PID. In the field of energy efficiency in commercial building air conditioning, a large number of studies have shown that compared with traditional control algorithms such as classic on/off or PID control, model predictive control can significantly improve energy efficiency. However, there is little literature mentioning the application of MPC in factory mushroom production rooms. This paper proposes a data-driven MPC and PID combined energy-saving control method for mushroom room air conditioning. This method uses the CNN-GRU-Attention combination neural network as the prediction model, combined with prediction error compensation and dynamic update mechanism of the prediction model dataset, to achieve an accurate prediction of indoor temperature in mushroom houses. Establish an objective function for air conditioning control duration and temperature, use the non-dominated sorting genetic algorithm II (NSGA-II) to solve for the optimal control sequence of the air conditioning in the control time domain, and use the entropy weight method to determine the optimal decision quantity. Integrate rolling optimization, feedback mechanism, and PID to achieve precise and energy-saving control of the mushroom room environment. The experimental results show that compared with the on/off thermostat and PID controller, the designed controller reduces power consumption by 12% and 5%, respectively, and has good application and demonstration value in the field of industrial production of edible mushrooms.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
A dual deep learning approach for winter temperature prediction in solar greenhouses in Northern China
作者:Yu, Jingxin;Zhang, Ruochen;Zheng, Wengang;Wei, Xiaoming;Yu, Jingxin;Sun, Congcong;Yu, Jingxin;Zhao, Jinpeng;Zhang, Ruochen;Zheng, Wengang;Wei, Xiaoming;Zhao, Jinpeng;Xu, Linlin
关键词:Winter temperature prediction; Solar greenhouse; Northern china; Dual deep learning; Optimal cultivation
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding



