Analysis of crop leaf area index, leaf chlorophyll content, and canopy chlorophyll content based on deep learning and hyperspectral remote sensing
文献类型: 外文期刊
作者: Leng, Mengdie 1 ; Liu, Yang 2 ; Li, Bing 3 ; Che, Yinchao 1 ; Feng, Haikuan 4 ; Shu, Meiyan 1 ; Xu, Xin 1 ; Qiao, Hongbo 1 ; Yue, Jibo 1 ;
作者机构: 1.Henan Agr Univ, Coll Informat & Management Sci, 63 Agr Rd, Zhengzhou 450002, Henan, Peoples R China
2.China Agr Univ, Minist Educ, Key Lab Smart Agr Syst, Beijing, Peoples R China
3.Henan Univ, Key Res Inst Yellow River Civilizat & Sustainable, Kaifeng, Peoples R China
4.Nanjing Agr Univ, Coll Agr, Nanjing, Peoples R China
5.Beijing Res Ctr Informat Technol Agr, Minist Agr, Key Lab Quantitat Remote Sensing Agr, Beijing, Peoples R China
关键词: Deep learning; hyperspectral remote sensing; canopy chlorophyll content; convolutional neural network
期刊名称:INTERNATIONAL JOURNAL OF REMOTE SENSING ( 影响因子:2.6; 五年影响因子:2.9 )
ISSN: 0143-1161
年卷期: 2025 年
页码:
收录情况: SCI
摘要:
Canopy chlorophyll content (CCC) is a critical indicator for assessing crop photosynthetic capacity, nitrogen status, and the occurrence of diseases. Accurate estimation of CCC holds significant importance for precision agriculture, providing a scientific basis for crop management, yield prediction, and stress detection. CCC is commonly defined as the product of leaf area index (LAI) and leaf chlorophyll content (LCC). Traditional methods of acquiring CCC rely on destructive sampling, which limits large-scale application. Hyperspectral remote sensing enables non-destructive acquisition of rich spectral information from the crop canopy across the visible to near-infrared spectrum, offering a promising approach for CCC estimation. This study proposes a convolutional neural network-based model, CanopyChlNet, to jointly estimate LAI and LCC, thereby deriving CCC. The model utilizes a one-dimensional CNN structure to effectively extract deep spectral features from hyperspectral data, improving estimation accuracy. Field-measured canopy hyperspectral reflectance and corresponding LAI and LCC data from winter wheat and potato were used to train and validate the model. The CanopyChlNet model outperformed both Random Forest (RF) and Partial Least Squares Regression (PLSR) in estimating LAI, LCC, and CCC, achieving R2 values of 0.709, 0.775, and 0.718, with RMSE values of 0.803 m2
- 相关文献
作者其他论文 更多>>
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
Molecular dissection of hemizygote-dependent dominance of super-early flowering in soybean
作者:Xu, Xin;Yu, Yang;Jiang, Bingjun;Cao, Dong;Zhang, Lixin;Jia, Hongchang;Sun, Xuegang;Chen, Li;Yuan, Shan;Chen, Fulu;Lu, Zefu;Liu, Yanhong;Naser, Mahmoud;Wu, Tingting;Wu, Cunxiang;Sun, Shi;Han, Tianfu;Yu, Yang;Cao, Dong;Zhang, Qingzhu;Han, Tianfu
关键词:Soybean; Hemizygote-dependent dominance; Flowering time; siRNA; DNA methylation
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model
-
Retrieving the chlorophyll content of individual apple trees by reducing canopy shadow impact via a 3D radiative transfer model and UAV multispectral imagery
作者:Zhang, Chengjian;Chen, Zhibo;Chen, Riqiang;Zhang, Wenjie;Zhang, Chengjian;Chen, Riqiang;Zhang, Wenjie;Zhao, Dan;Yang, Guijun;Xu, Bo;Feng, Haikuan;Yang, Hao
关键词:Chlorophyll content; Shadows; Vegetation index (VI); Radiative transfer models (RTMs); Hybrid inversion model; Individual apple tree crown
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content



