Control Strategy of Grain Truck Following Operation Considering Variable Loads and Control Delay
文献类型: 外文期刊
作者: Ma, Zhikai 1 ; Chong, Kun 1 ; Ma, Shiwei 1 ; Fu, Weiqiang 3 ; Yin, Yanxin 3 ; Yu, Helong 2 ; Zhao, Chunjiang 3 ;
作者机构: 1.Agr Univ Hebei, Coll Mech & Elect Engn, Baoding 071001, Peoples R China
2.Jilin Agr Univ, Inst Smart Agr, Jilin 130118, Jilin, Peoples R China
3.Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
关键词: agricultural machinery; control delay; vehicle variable load; multi-machine coordination
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.408; 五年影响因子:3.459 )
ISSN:
年卷期: 2022 年 12 卷 10 期
页码:
收录情况: SCI
摘要: Considering the slow response and unstable velocity of agricultural machinery caused by soil resistance, actuator delay, environmental change, velocity fluctuation, and other internal and external factors under real working conditions, a kind of agricultural machinery following a control system that considers variable load and control delay was proposed. Taking distance-keeping, velocity-following, and acceleration-following as parameters, the controller model was deduced, and the influence of different values of model parameters on the driving stability of agricultural machinery was analyzed in detail. In addition, this paper describes a kind of agricultural machinery following a strategy that can realize the graded adjustment of vehicle distance with the dynamic increase in vehicle weight. Then, the following strategy, under the influence of velocity and quality, was simulated and verified using MATLAB/Simulink (MATLAB2016a, mathworks: Natick, Massachusetts, USA). When the crop harvester was at 1.5 m/s and the amplitude of velocity fluctuation was 0.3 m and 1.3 m, respectively, the grain truck could adjust its velocity to keep up with the crop harvester to complete the operation task. Simulation verification was carried out for the proposed graded adjustment of vehicle distance of agricultural machinery following strategy. The unit mass of the crops was set at 360 kg, and the vehicle distance changed at 18s to adapt to the graded adjustment of the vehicle distance following strategy. Finally, a real-vehicle validation test was carried out, and the results show that the grain truck velocity can keep up with the change of crop harvester velocity on the basis of maintaining the desired vehicle distance, the grain truck velocity can keep up with the change of crop harvester velocity on the road condition, which verifies the effectiveness and feasibility of the proposed method.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Study on seeding delay time and lag distance of automatic section control system for maize seeder
作者:Ling, Lin;Li, Hanqing;Xiao, Yuejin;Fu, Weiqiang;Dong, Jianjun;Li, Liwei;Liu, Rui;Huang, Xinguang;Wu, Guangwei;Meng, Zhijun;Yan, Bingxin;Ling, Lin;Fu, Weiqiang;Wu, Guangwei;Meng, Zhijun;Yan, Bingxin
关键词:Automatic section control; Seeding delay time; Seeding lag distance; Influencing factor; Variation pattern
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding



