Semi-supervised fish school density estimation and counting network in recirculating aquaculture systems based on adaptive density proxy
文献类型: 外文期刊
作者: Zhu, Kaijie 1 ; Yang, Xinting 1 ; Yang, Caiwei 1 ; Fu, Tingting 1 ; Ma, Pingchuan 1 ; Hu, Weichen 1 ; Zhou, Chao 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing 100097, Peoples R China
2.Natl Engn Lab Agriprod Qual Traceabil, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Guangxi Univ, Sch Mech Engn, Nanning 530004, Peoples R China
关键词: Fish school density estimation; Aquaculture; Machine vision; Adaptive density proxy
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.9; 五年影响因子:9.3 )
ISSN: 0168-1699
年卷期: 2025 年 230 卷
页码:
收录情况: SCI
摘要: In aquaculture, the precise quantification of fish school density holds importance for the optimization of culture management. Nevertheless, the fish occlusion, their rapid movement, as well as the size variations attributable to fluctuating distances, poses great challenges to density estimation. To overcome the above issues, this study introduces a novel semi-supervised detection network, termed FNSE (Fish Net Semi-Supervised Estimator). Specifically, the network initially employs the VGG19 backbone network to extract the global features. Subsequently, the network employs a density-proxy-guided adaptive semi-supervised fish counting network to connect different image regions, so as to obtain reliable supervision signals. Furthermore, the network incorporates a regression head with a transformer. Which combines learnable regional and local regularization. It employs attention mechanisms for enhanced the processing ability. This addresses the considerable size variations in fish caused by the change of observation distance, thereby further refining foreground features. The experimental result demonstrates that, with only 40 % of the data labeled, the FNSE network attains an accuracy of 95.81 %, alongside a Mean Absolute Error (MAE) of 7.23 and a Root Mean Square Error (RMSE) of 11.70. In comparison to DACount and MRCount, the FNSE network reduces the MAE from 9.49 and 10.27 to 7.23, signifying a substantial reduction in the MAE by approximately 24 % and 30 %, respectively, and concurrently surpassing other fully supervised methods. Therefore, the proposed FNSE can be effectively utilized for fish counting and density estimation in aquaculture and provides useful input for the development management system.
- 相关文献
作者其他论文 更多>>
-
2D/0D Heterojunction Fluorescent Probe with Schottky Barrier Based on Ti3C2TX MXene Loaded Graphene Quantum Dots for Detection of H2S During Food Spoilage
作者:Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Yang, Xinting;Shi, Ce;Sun, Xia;Guo, Yemin;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Zhang, Jingbin;Zhang, Jingbin;Zhang, Jiaran
关键词:fluorescent probe; graphene quantum dots; H2S contamination; heterojunction; Ti3C2Tx MXene
-
DF-DETR: Dead fish-detection transformer in recirculating aquaculture system
作者:Fu, Tingting;Feng, Dejun;Li, Shantan;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao
关键词:DF-DETR; Dead fish detection; Feature fusion; Recirculating aquaculture system
-
DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring
作者:Chen, Xiao;Hu, Huan;Li, Tianjun;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Zhou, Zijie
关键词:Pest detection; YOLOv8; Fusion features; Small objects; Multiple scale detection
-
Typical farming behaviors recognition in aquaculture using an improved VMamba approach
作者:Sun, Chenglin;Liu, Chenjian;Sun, Chenglin;Yang, Xinting;Liu, Chenjian;Ye, Yuming;Li, Shantan;Xu, Xudong;Zhou, Chao;Sun, Chenglin;Yang, Xinting;Liu, Chenjian;Ye, Yuming;Li, Shantan;Xu, Xudong;Zhou, Chao;Sun, Chenglin;Yang, Xinting;Liu, Chenjian;Ye, Yuming;Li, Shantan;Xu, Xudong;Zhou, Chao
关键词:VMamba; EMA; IDConv; Farming behaviors recognition; CGFormer; Aquaculture
-
Morphological feature assessment of Larimichthys crocea for quality grading: a computer vision approach
作者:Feng, Dejun;Liu, Hang;Gui, Fukun;Wu, Lianhui;Ying, Xiaoguo;Qu, Xiaoyu;Gao, Yang;Zhou, Chao
关键词:Large yellow croaker; Morphological feature detection; Grading evaluation system; Pectoral fin detection; Fin-to-eye length
-
From passive to self-aware packs: Flexible Sensor-AI integration powering intelligent, sustainable food packaging
作者:Hou, Hongwei;Chen, Huan;Fu, Yaning;Mu, Wenjun;Zhang, Jingbin;Jia, Zhixin;Yang, Xinting
关键词:Smart food packaging; Flexible sensors; Artificial intelligence; Shelf-life prediction; Human-computer interaction AI
-
Nondestructive perch target detection and size measurement from RGB-D images in recirculating aquaculture system
作者:Hu, Weichen;Hu, Weichen;Yang, Xinting;Ma, Pingchuan;Zhu, Kaijie;Fu, Tingting;Zhou, Chao;Hu, Weichen;Yang, Xinting;Ma, Pingchuan;Zhu, Kaijie;Fu, Tingting;Zhou, Chao;Hu, Weichen;Yang, Xinting;Ma, Pingchuan;Zhu, Kaijie;Fu, Tingting;Zhou, Chao
关键词:Perch detection; Recirculating aquaculture system; RGB-D images; Size measurement



