Prediction of oil content in single maize kernel based on hyperspectral imaging and attention convolution neural network
文献类型: 外文期刊
作者: Zhang, Liu 1 ; An, Dong 1 ; Wei, Yaoguang 1 ; Liu, Jincun 1 ; Wu, Jianwei 5 ;
作者机构: 1.China Agr Univ, Natl Innovat Ctr Digital Fishery, Beijing 100083, Peoples R China
2.China Agr Univ, Key Lab Smart Farming Technol Aquat Anim & Livest, Minist Agr & Rural Affairs, Beijing 100083, Peoples R China
3.Beijing Engn & Technol Res Ctr Internet Things Ag, Beijing 100083, Peoples R China
4.China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
5.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
关键词: Near infrared hyperspectral imaging; Oil content; Prediction; Deep learning; Attentional mechanism
期刊名称:FOOD CHEMISTRY ( 2021影响因子:9.231; 五年影响因子:8.795 )
ISSN: 0308-8146
年卷期: 2022 年 395 卷
收录情况: SCI
摘要: An attention (A) based convolutional neural network regression (CNNR) model, namely ACNNR, was proposed to combine hyperspectral imaging to predict oil content in single maize kernel. During the period, a reflectance HSI system was used to collect hyperspectral images of embryo side and non-embryo side of single maize kernel, and the performances of CNNR (without attention mechanism), ACNNR and partial least squares regression (PLSR) were compared. For PLSR, a series of spectral preprocessing and dimensionality reduction methods were used to finally determine the optimal hybrid PLSR model. Whereas for CNNR and ACNNR, only raw spectra were used as their inputs. The results showed that embryo side was more suitable for developing regression models; the attentional mechanism was helpful to reduce the error of prediction, making ACNNR performed best (coefficient of determination of prediction = 0.9198). Overall, the proposed method did not require additional processing on raw spectra, and performed well.
- 相关文献
作者其他论文 更多>>
-
Computer Vision-Based Measurement Techniques for Livestock Body Dimension and Weight: A Review
作者:Ma, Weihong;Qi, Xiangyu;Sun, Yi;Gao, Ronghua;Ding, Luyu;Wang, Rong;Peng, Cheng;Zhang, Jun;Wu, Jianwei;Xu, Zhankang;Li, Mingyu;Huang, Shudong;Li, Qifeng;Qi, Xiangyu;Zhao, Hongyan;Huang, Shudong
关键词:3D reconstruction; stressless body dimension measurement; visual weight estimation; precision livestock farming
-
Maize seed fraud detection based on hyperspectral imaging and one-class learning
作者:Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Wu, Jianwei;Wu, Jianwei
关键词:Fraud detection; Maize seeds; Hyperspectral imaging; One -class learning; Deep learning
-
Behavior analysis of juvenile steelhead trout under blue and red light color conditions based on multiple object tracking
作者:Li, Ziyu;Huang, Jinze;An, Dong;Li, Ziyu;Huang, Jinze;An, Dong;Li, Ziyu;Huang, Jinze;An, Dong;Li, Ziyu;Huang, Jinze;An, Dong;Chen, Xueweijie;Zhou, Yangen
关键词:steelhead trout; fish behavior; behavior quantify; aquaculture environment regulation; light color
-
A hyperspectral band selection method based on sparse band attention network for maize seed variety identification
作者:Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Wu, Jianwei;Wu, Jianwei
关键词:Hyperspectral imaging; Band selection; Attention mechanism; Deep learning; Seed variety identification
-
Maize seed variety identification using hyperspectral imaging and self-supervised learning: A two-stage training approach without spectral preprocessing
作者:Zhang, Liu;Zhang, Shubin;Liu, Jincun;Wei, Yaoguang;An, Dong;Zhang, Liu;Zhang, Shubin;Liu, Jincun;Wei, Yaoguang;An, Dong;Zhang, Liu;Zhang, Shubin;Liu, Jincun;Wei, Yaoguang;An, Dong;Zhang, Liu;Zhang, Shubin;Liu, Jincun;Wei, Yaoguang;An, Dong;Wu, Jianwei;Wu, Jianwei
关键词:Seed classification; Hyperspectral imaging; Self-supervised learning; Deep learning; Spectral analysis
-
Using filter pruning-based deep learning algorithm for the real-time fruit freshness detection with edge processors
作者:Mao, DianHui;Zhang, DengHui;Sun, Hao;Mao, DianHui;Wu, JianWei;Wu, JianWei;Chen, JunHua
关键词:PP-YOLO Tiny; Ultra Lightweight; FPGM algorithm; Real-time detection; Fruit
-
Research on the joint event extraction method orientates food live e-commerce
作者:Mao, Dianhui;Liu, Yiming;Li, Ruixuan;Chen, Junhua;Hao, Yuanrong;Liu, Yiming;Chen, Junhua;Wu, Jianwei;Wu, Jianwei
关键词:Event Extraction; Ontology construction; Knowledge Graph; Food e -commerce live streaming