文献类型: 外文期刊
作者: Wang, Lizhi 1 ; Gao, Rui 1 ; Li, Changchun 3 ; Wang, Jian 1 ; Liu, Yang 2 ; Hu, Jingyu 1 ; Li, Bing 6 ; Qiao, Hongbo 1 ; Feng, Haikuan 2 ; Yue, Jibo 1 ;
作者机构: 1.Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Peoples R China
2.Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Minist Agr, Beijing 100097, Peoples R China
3.Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo 454000, Peoples R China
4.Henan Polytech Univ, Inst Quantitat Remote Sensing & Smart Agr, Jiaozuo 454000, Peoples R China
5.China Agr Univ, Key Lab Smart Agr Syst, Minist Educ, Beijing 100083, Peoples R China
6.Henan Univ, Key Res Inst Yellow River Civilizat & Sustainable, Kaifeng 475001, Peoples R China
7.Henan Univ, Collaborat Innovat Ctr Yellow River Civilizat Hena, Kaifeng 475001, Peoples R China
关键词: leaf chlorophyll content; flavonoids; nitrogen balance index; maturity
期刊名称:REMOTE SENSING ( 影响因子:5.0; 五年影响因子:5.6 )
ISSN:
年卷期: 2023 年 15 卷 19 期
页码:
收录情况: SCI
摘要: Soybeans are rich in high-quality protein and raw materials for producing hundreds of chemical products. Consequently, soybean cultivation has gained widespread prevalence across diverse geographic regions. Soybean breeding necessitates the development of early-, standard-, and late-maturing cultivars to accommodate cultivation at various latitudes, thereby optimizing the utilization of solar radiation. In the practical process of determining the maturity of soybean breeding materials within the breeding field, the ripeness is assessed based on three critical criteria: pod moisture content, leaf color, and the degree of leaf shedding. These parameters reflect the crown structure, physicochemical parameters, and reproductive organ changes in soybeans during the maturation process. Therefore, methods for analyzing soybean maturity at the breeding plot scale should match the standards of agricultural experts to the maximum possible extent. This study presents a hyperspectral remote sensing approach for monitoring soybean maturity. We collected five periods of unmanned aerial vehicle (UAV)-based soybean canopy hyperspectral digital orthophoto maps (DOMs) and ground-level measurements of leaf chlorophyll content (LCC), flavonoids (Flav), and the nitrogen balance index (NBI) from a breeding farm. This study explores the following aspects: (1) the correlations between soybean LCC, NBI, Flav, and maturity; (2) the estimation of soybean LCC, NBI, and Flav using Gaussian process regression (GPR), partial least squares regression (PLSR), and random forest (RF) regression techniques; and (3) the application of threshold-based methods in conjunction with normalized difference vegetation index (NDVI)+LCC and NDVI+NBI for soybean maturity monitoring. The results of this study indicate the following: (1) Soybean LCC, NBI, and Flav are associated with maturity. LCC increases during the beginning bloom period (P1) to the beginning seed period (P3) and sharply decreases during the beginning maturity period (P4) stage. Flav continues to increase from P1 to P4. NBI remains relatively consistent from P1 to P3 and then drops rapidly during the P4 stage. (2) The GPR, PLSR, and RF methodologies yield comparable accuracy in estimating soybean LCC (coefficient of determination (R-2): 0.737-0.832, root mean square error (RMSE): 3.35-4.202 Dualex readings), Flav (R-2: 0.321-0.461, RMSE: 0.13-0.145 Dualex readings), and NBI (R-2: 0.758-0.797, RMSE: 2.922-3.229 Dualex readings). (3) The combination of the threshold method with NDVI < 0.55 and NBI < 8.2 achieves the highest classification accuracy (accuracy = 0.934). Further experiments should explore the relationships between crop NDVI, the Chlorophyll Index, LCC, Flav, and NBI and crop maturity for different crops and ecological areas.
- 相关文献
作者其他论文 更多>>
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Plant-based proteins: advances in their sources, digestive profiles in vitro and potential health benefits
作者:Li, Mengzhuo;Qin, Peiyou;Zou, Liang;Qin, Peiyou;Zhang, Lizhen;Ren, Guixing;Liu, Yang;Zhao, Xiaoyan;Qin, Peiyou
关键词:Plant-based proteins; protein sources; in vitro digestion; processing; health benefits
-
Effects of Environmental Hypoxia on Serum Hematological and Biochemical Parameters, Hypoxia-Inducible Factor (hif) Gene Expression and HIF Pathway in Hybrid Sturgeon (Acipenser schrenckii ♂ x Acipenser baerii ♀)
作者:Ren, Yuanyuan;Cheng, Bo;Ren, Yuanyuan;Tian, Yuan;Liu, Yang;Yu, Huanhuan
关键词:hypoxia; physiological response; hypoxia-induced factor; HIF pathway; hybrid sturgeon
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation
作者:Sun, Heguang;Shu, Meiyan;Yue, Jibo;Guo, Wei;Sun, Heguang;Zhang, Jie;Feng, Ziheng;Feng, Haikuan;Song, Xiaoyu;Zhou, Lin
关键词:peanut southern blight; SMOTE; hyperspectral reflectance; machine learning; FOD
-
Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning
作者:Yue, Jibo;Wang, Jian;Guo, Wei;Ma, Xinming;Qiao, Hongbo;Yang, Guijun;Liu, Yang;Feng, Haikuan;Yue, Jibo;Yang, Guijun;Li, Changchun;Niu, Qinglin;Feng, Haikuan
关键词:Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral