您好,欢迎访问北京市农林科学院 机构知识库!

Analysis of Crop Irrigation Water Requirements and Water Scarcity Footprint in the Beijing-Tianjin-Hebei Region Based on the GeoSim-AquaCrop Model

文献类型: 外文期刊

作者: Huai, Heju 1 ; Zhang, Qian 1 ; Li, Zuolin 1 ; Liang, Lina 3 ; Tang, Xiumei 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China

2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

3.Beijing Acad Agr & Forestry Sci, Inst Plant Nutr Resources & Environm, Beijing 100097, Peoples R China

关键词: yield; irrigation water requirements; water scarcity footprint; AquaCrop

期刊名称:AGRONOMY-BASEL ( 影响因子:3.7; 五年影响因子:4.0 )

ISSN:

年卷期: 2024 年 14 卷 1 期

页码:

收录情况: SCI

摘要: To reduce crop-related water consumption and enhance agricultural water resource efficiency in the Beijing-Tianjin-Hebei region, this study employed the AquaCrop model to simulate crop yield and irrigation water requirements and calculated the water scarcity footprint (WSF). The results were as follows: (1) The AquaCrop model exhibited strong applicability, with R2, RMSE (Root Mean Square Error), EF (Nash-Sutcliffe model efficiency coefficient) and d values of 0.9611, 6.6%, 0.91, and 0.98 (winter wheat), and 0.9571, 5.5%, 0.95, and 0.99 (summer maize) for canopy cover simulation. Similarly, aboveground biomass simulation yielded values of 0.9661, 0.8 t/ha, 0.93, and 0.98 (winter wheat), and 0.9087, 1.3 t/ha, 0.90, and 0.98 (summer maize). Winter wheat soil moisture content simulation showed an R2 of 0.9706, RMSE of 3.7 mm, EF of 0.93, and d of 0.98. (2) The AquaCrop model simulated the winter wheat and summer maize yields and irrigation water requirements for the years 2009, 2014, and 2019, validating the scalability and spatial visualization capabilities of GeoSim in extending AquaCrop simulations. (3) Integrating the water footprint and the water resources system, this study assessed the WSFs of winter wheat and summer maize. From 2009 to 2019, winter wheat production in the region increased by 25.08%, and summer maize production increased by 37.39%. The WSF of winter wheat decreased, whereas the WSF of summer maize increased. It is recommended to reduce crop cultivation areas in regions such as Daming County, Ningjin County, and Dingzhou City while further improving irrigation water efficiency, which would facilitate the sustainable utilization of water resources in the area.

  • 相关文献
作者其他论文 更多>>