您好,欢迎访问浙江省农业科学院 机构知识库!

Rice Flag Leaf Physiology, Organ and Canopy Temperature in Response to Water Stress

文献类型: 外文期刊

作者: Yan, Chuan 1 ; Chen, Heyun 1 ; Fan, Tianyun 1 ; Huang, Yifeng 1 ; Yu, Shouwu 1 ; Chen, Shanyu 1 ; Hong, Xiaofu 1 ;

作者机构: 1.Zhejiang Acad Agr Sci, Inst Crop & Nucl Technol Utilizat, Hangzhou 310021, Zhejiang, Peoples R China

关键词: Organ and canopy temperature;Physiology of flag leaf;Rice;Water stress

期刊名称:PLANT PRODUCTION SCIENCE ( 影响因子:2.222; 五年影响因子:2.175 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Using two rice cultivars, the effect of severe, mild and no water stress, W3, W2 and W1, respectively, on flag leaf physiology, the ecological characteristics of canopy and organ temperatures were studied in 2008 and 2009. The grain yield was reduced under W3 due to decreased seed setting rate and 1000 grain weight but not under W2. Water stress had a significant effect on the flag leaf physiological characteristics along with the soluble sugar and amino proline content. Catalase and peroxidase activities, photosynthetic and transpiration rates, and stomatal conductance in W2 were significantly higher than in W3 and similar to those in W1. The organ and canopy temperatures were significantly higher in W3 than in either W1 or W2, and there was no significant difference between W1 and W2. This study clearly showed that water stress had a significant effect on leaf physiology, temperature of organs and canopy. Mild water stress (soil water potential maintained at -15- -20 kPa) could construct a population that is water-saving and resistant to heat stress. This facilitates access to a high yield as well.

  • 相关文献

[1]Metabolite Profiling of Barley Grains Subjected to Water Stress: To Explain the Genotypic Difference in Drought-Induced Impacts on Malting Quality. Wu, Xiaojian,Cai, Kangfeng,Zhang, Guoping,Zeng, Fanrong,Wu, Xiaojian. 2017

[2]Identification of QTLs associated with tissue culture response through sequencing-based genotyping of RILs derived from 93-11 x Nipponbare in rice (Oryza sativa). Li, Sujuan,Yan, Song,Zou, Guihua,Tao, Yuezhi,Li, Sujuan,Qian, Qian,Wang, A-hong,Huang, Xuehui,Han, Bin,Qian, Qian.

[3]Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier. Sun, Wanchun,Zhang, Jie,Fan, Qionghua,Xue, Gaofeng,Li, Zhaojun,Liang, Yongchao,Sun, Wanchun.

[4]Genome wide association mapping for grain shape traits in indica rice. Feng, Yue,Lu, Qing,Zhang, Mengchen,Xu, Qun,Yang, Yaolong,Wang, Shan,Yuan, Xiaoping,Yu, Hanyong,Wang, Yiping,Wei, Xinghua,Zhai, Rongrong.

[5]Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Guo, B.,Liang, Y. C.,Zhu, Y. G.,Zhao, F. J..

[6]Novel rice mutants overexpressing the brassinosteroid catabolic gene CYP734A4. Qian, Wenjing,Wu, Chao,Fu, Yaping,Hu, Guocheng,Liu, Wenzhen,Qian, Wenjing,He, Zhengquan,Wu, Chao.

[7]Molecular Identification and Analysis of Arsenite Stress-Responsive miRNAs in Rice. Liu, Qingpo,Zhang, Hengmu.

[8]Genetic analysis of genetic basis of a physiological disorder "straighthead" in rice (Oryza sativa L.). Li, Xiaobai,Jia, Limeng,Wu, Dianxing,Yan, Wengui,Jackson, Aaron,Jia, Melissa,Li, Xiaobai,Jia, Limeng,Agrama, Hesham,Moldenhauer, Karen,Correa, Fernando.

[9]Identification of quantitative trait loci associated with tolerance to low potassium and related ions concentrations at seedling stage in rice (Oryza sativa L.). Fang, Yunxia,Fang, Yunxia,Zhang, Xiaoqin,Lu, Wenyi,Pan, Jiangjie,Xue, Dawei,Wu, Weiming,Hu, Jiang,Guo, Longbiao,Zeng, Dali,Xue, Dawei,Jiang, Hua.

[10]Antibacterial activity of two chitosan solutions and their effect on rice bacterial leaf blight and leaf streak. Li, Bin,Liu, Baoping,Shan, Changlin,Ibrahim, Muhammad,Xie, Guanlin,Li, Hong-ye,Lou, Yihan,Wang, Yangli,Sun, Guochang.

[11]Genome-Wide Characterization of Rice Black Streaked Dwarf Virus-Responsive MicroRNAs in Rice Leaves and Roots by Small RNA and Degradome Sequencing. Sun, Zongtao,He, Yuqing,Li, Junmin,Wang, Xu,Chen, Jianping,He, Yuqing.

[12]OsCYCP1;1, a PHO80 homologous protein, negatively regulates phosphate starvation signaling in the roots of rice (Oryza sativa L.). Deng, Minjuan,Xu, Lei,Liu, Yang,Wang, Fang,Zhao, Hongyu,Wei, Xijuan,Wang, Jichao,Yi, Keke,Hu, Bin.

[13]Structure of double-shelled rice dwarf virus. Lu, GY,Zhou, ZH,Baker, ML,Jakana, J,Cai, DY,Wei, XC,Chen, SX,Gu, XC,Chiu, W.

[14]Involvement of miR528 in the Regulation of Arsenite Tolerance in Rice (Oryza sativa L.). Liu, Qingpo,Hu, Haichao,Zhu, Leyi,Li, Ruochen,Zhang, Liqing,Yang, Yuyan,Liu, Qingpo,Liu, Xingquan,Feng, Ying,Zhang, Hengmu.

[15]Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. Chen, Juan,Liu, Xiang,Yin, Shan-Shan,Li, Xiu-Ling,Hu, Wen-Jun,Simon, Martin,Shen, Zhi-Jun,Zheng, Hai-Lei,Chen, Juan,Wang, Chao,Hu, Wen-Jun,Xiao, Qiang,Chu, Cheng-Cai,Chu, Cheng-Cai,Peng, Xin-Xiang.

[16]Differential Regulation of Protochlorophyllide Oxidoreductase Abundances by VIRESCENT 5A (OsV5A) and VIRESCENT 5B (OsV5B) in Rice Seedlings. Liu, Hongjia,Tao, Yuezhi,Liu, Hongjia,Li, Qingzhu,Yang, Feng,Zhu, Fuyuan,Sun, Yi,Lo, Clive,Zhu, Fuyuan,Sun, Yi.

[17]A consortium of rhizobacterial strains and biochemical growth elicitors improve cold and drought stress tolerance in rice (Oryza sativa L.). Kakar, K. U.,Cui, Z. -Q.,Li, B.,Xie, G. -L.,Kakar, K. U.,Cui, Z. -Q.,Li, B.,Xie, G. -L.,Ali, E.,Kakar, K. U.,Ren, X. -l.,Nawaz, Z.,Hassan, M. A.,Sun, G. -C..

[18]Genome-wide identification and evolutionary analysis of positively selected miRNA genes in domesticated rice. Liu, Qingpo,Wang, Hong,Hu, Haichao,Liu, Qingpo,Wang, Hong,Hu, Haichao,Zhang, Hengmu.

[19]Rice ragged stunt oryzavirus: role of the viral spike protein in transmission by the insect vector. Zhou, GY,Lu, XB,Lu, HJ,Lei, JL,Chen, SX,Gong, ZX.

[20]CURVED CHIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development. Yan, Dawei,Zhang, Lin,Zeng, Longjun,Liu, Jiyun,Li, Qun,He, Zuhua,Zhang, Xiaoming,Ye, Shenghai,He, Zuhua.

作者其他论文 更多>>