您好,欢迎访问中国热带农业科学院 机构知识库!

Suppression of expression of the putative receptor-like kinase gene NRRB enhances resistance to bacterial leaf streak in rice

文献类型: 外文期刊

作者: Guo, Lijia 1 ; Guo, Chiming 1 ; Li, Min 1 ; Wang, Wujing 1 ; Luo, Chengke 1 ; Zhang, Yuxia 1 ; Chen, Liang 1 ;

作者机构: 1.Xiamen Univ, Sch Life Sci, Xiamen Key Lab Plant Genet, Xiamen 361005, Peoples R China

2.Chinese Acad Trop Agr Sci, Environm & Plant Protect Inst, Key Lab Integrated Pest Management Trop Crops, Minist Agr, Haikou 571101, Hainan, Peoples R China

关键词: Resistance;Defense response;Pathogenesis-related gene;Bacterial leaf streak;Stress;Rice

期刊名称:MOLECULAR BIOLOGY REPORTS ( 影响因子:2.316; 五年影响因子:2.357 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an important disease of rice, which is responsible for the economic losses worldwide. Functional investigation of differentially expressed protein genes (DEPGs) from rice (Oryza sativa L.) upon Xoc infection provides insight into the molecular mechanism of rice-Xoc interactions. Here, we show that one of DEPGs designated NRRB plays a role in rice-Xoc interactions. NRRB, a receptor-like cytoplasmic kinase gene was preferentially expressed in leaf blades and leaf sheaths where the pathogen colonized. Its transcription was depressed by two defense-signal compounds salicylic acid and 1-aminocyclopropane-1-carboxylic-acid, but was activated by wounding and abscisic acid. Additionally, a plenty of cis-elements associated with stress responses were discovered in the promoter region of NRRB. These data suggest that NRRB is involved in stress responses. More importantly, the NRRB-suppressing rice plants exhibited enhanced resistance against BLS, with the markedly shorter average lesion length than that of the wild type. Furthermore, transcription of some salicylic acid synthesis-related and pathogenesis-related genes including PAD4, PR1a and WRKY13 in transgenic plants was activated, implying that enhanced resistance to BLS might be mediated by the activation of the SA signaling pathway. In conclusion, NRRB gene is involved in various stress responses and regulating resistance to BLS, therefore it might be one of useful genes for rice improvement in future.

  • 相关文献

[1]Identification of differentially expressed proteins in poplar leaves induced by Marssonina brunnea f. sp Multigermtubi. Yuan, Kun,Zhang, Bo,Zhang, Yanmei,Cheng, Qiang,Wang, Mingxiu,Huang, Minren,Yuan, Kun,Zhang, Yanmei. 2008

[2]Identification and Characterization of Phospholipase D Genes Putatively Involved in Internal Browning of Pineapple during Postharvest Storage. Zhang, Lubin,Zhan, Rulin. 2017

[3]Characterization of a novel cyclase-like gene family involved in controlling stress tolerance in rice. Qin, Yonghua,Shen, Xin,Ding, Xipeng,Qin, Yonghua,Wang, Nili,Ding, Xipeng,Qin, Yonghua,Wang, Nili,Ding, Xipeng.

[4]Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Xu, Bi Yu,Su, Wei,Liu, Ju Hua,Wang, Jia Bao,Jin, Zhi Qiang.

[5]Molecular and functional characterization of the HbSRPP promoter in response to hormones and abiotic stresses. Guo, Dong,Li, Hui-Liang,Tang, Xiao,Peng, Shi-Qing,Tang, Xiao,Peng, Shi-Qing.

[6]Functional Properties of a Cysteine Proteinase from Pineapple Fruit with Improved Resistance to Fungal Pathogens in Arabidopsis thaliana. Wang, Wei,Guo, Ning,Zhang, Chen,Wang, Wei,Zhang, Xiumei,Sun, Guangming,Xie, Jianghui,Zhang, Lu.

[7]De novo transcriptome sequencing of black pepper (Piper nigrum L.) and an analysis of genes involved in phenylpropanoid metabolism in response to Phytophthora capsici. Hao, Chaoyun,Fan, Rui,Tan, Lehe,Hu, Lisong,Wu, Baoduo,Wu, Huasong,Xia, Zhiqiang,Hao, Chaoyun,Tan, Lehe,Hu, Lisong,Wu, Huasong,Fan, Rui,Wu, Baoduo,Wu, Huasong. 2016

[8]Screening for resistance in wild Lycopersicon species to Fusarium oxysporum f sp lycopersici race 1 and race 2. Huang, CC,Lindhout, P. 1997

[9]A Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus dabanensis D-8(T): cloning and molecular characterization. Yang, LF,Jiang, JQ,Zhao, BS,Zhang, B,Feng, DQ,Lu, WD,Wang, L,Yang, SS.

[10]Role of leaf structure in resistance to powdery mildew in water melon. Zhang, Hui-Jun,Ge, Yu,Wang, Qiang,Zhang, Jian-Nong.

[11]Resistance of Botryodiplodia theobromae to Carbendazim and the Fungicides Screening for Mango Stem End Rot Control. Li, M.,Gao, Z. Y.,Zhang, Z. K.,Yang, F. Z.,Li, M.,Gao, Z. Y.,Zhang, Z. K.,Yang, F. Z.,Li, M..

[12]OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. Guo, Chiming,Luo, Chengke,Guo, Lijia,Li, Min,Zhang, Yuxia,Chen, Liang,Guo, Xiaoling,Wang, Liangjiang,Luo, Chengke,Guo, Lijia. 2016

[13]Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses. Yu, Y.,Cui, Y. C.,Ren, C.,Rocha, P. S. C. F.,Wang, M. L.,Xia, X. J.,Yu, Y.,Ren, C.,Peng, M.,Xu, G. Y.. 2016

[14]Metabolite profiles of rice cultivars containing bacterial blight-resistant genes are distinctive from susceptible rice. Huang, Xin,Zhu, Shuifang,Wu, Jiao,Yu, Haichuan,Wu, Jiao,Dai, Haofu,Mei, Wenli,Peng, Ming. 2012

[15]Comparative Transcriptional Profiling of Melatonin Synthesis and Catabolic Genes Indicates the Possible Role of Melatonin in Developmental and Stress Responses in Rice. Wei, Yunxie,Zeng, Hongqiu,He, Chaozu,Shi, Haitao,Hu, Wei,Chen, Lanzhen. 2016

[16]Isolation and Functional Characterization of Bidirectional Promoters in Rice. Wang, Rui,Zhu, Menglin,Yang, Mei,Zhou, Fei,Chen, Hao,Lin, Yongjun,Wang, Rui,Zhu, Menglin,Yang, Mei,Zhou, Fei,Chen, Hao,Lin, Yongjun,Yan, Yan. 2016

[17]Distribution of selenium and cadmium in soil-rice system of selenium-rich area in Hainan, China. Wang, Dengfeng,Wei, Zhiyuan,Qi, Zhiping,Tang, Shumei. 2014

[18]A precise and consistent assay for major wall polymer features that distinctively determine biomass saccharification in transgenic rice by near-infrared spectroscopy. Huang, Jiangfeng,Li, Ying,Wang, Yanting,Chen, Yuanyuan,Liu, Mingyong,Wang, Youmei,Zhang, Ran,Zhou, Shiguang,Li, Jingyang,Tu, Yuanyuan,Hao, Bo,Peng, Liangcai,Xia, Tao,Huang, Jiangfeng,Li, Ying,Wang, Yanting,Chen, Yuanyuan,Liu, Mingyong,Wang, Youmei,Zhang, Ran,Zhou, Shiguang,Li, Jingyang,Tu, Yuanyuan,Hao, Bo,Peng, Liangcai,Xia, Tao,Huang, Jiangfeng,Li, Ying,Wang, Yanting,Chen, Yuanyuan,Liu, Mingyong,Wang, Youmei,Zhang, Ran,Zhou, Shiguang,Li, Jingyang,Tu, Yuanyuan,Peng, Liangcai,Liu, Mingyong,Hao, Bo,Xia, Tao,Li, Jingyang. 2017

[19]Distribution of copper in soil and rice system of Hainan Island, China. Wang Dengfeng,Huang Haijie,Feng Huande,Han Miaojie,Qi Zhiping,Wang Hua. 2016

[20]The rice gene OsZFP6 functions in multiple stress tolerance responses in yeast and Arabidopsis. Guan, Qing-jie,Bu, Qing-yun,Wang, Zhen-yu,Wang, Li-feng,Guan, Qing-jie.

作者其他论文 更多>>