您好,欢迎访问中国热带农业科学院 机构知识库!

Physiological and molecular responses to drought stress in rubber tree (Hevea brasiliensis Muell. Arg.)

文献类型: 外文期刊

作者: Wang, Li-feng 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Danzhou Invest & Expt Stn Trop Crops, Rubber Res Inst, Minist Agr, Danzhou 571737, Hainan, Peoples R China

关键词: Antioxidative enzyme;Drought;Hevea brasiliensis;Osmoregulation;Photosynthesis;Reactive oxygen species

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Plant drought stress response and tolerance are complex biological processes. In order to reveal the drought tolerance mechanism in rubber tree, physiological responses and expressions of genes involved in energy biosynthesis and reactive oxygen species (ROS) scavenging were systematically analyzed following drought stress treatment. Results showed that relative water content (RWC) in leaves was continuously decreased with the severity of drought stress. Wilting leaves were observed at 7 day without water (dww). Total chlorophyll content was increased at 1 dww, but decreased from 3 dww. However, the contents of malondialdehyde (MDA) and proline were significantly increased under drought stress. Peroxidase (POD) and superoxide dismutase (SOD) activities were markedly enhanced at 1 and 3 dww, respectively. Meanwhile, the soluble sugar content was constant under drought stress. These indicated that photosynthetic activity and membrane lipid integrity were quickly attenuated by drought stress in rubber tree, and osmoregulation participated in drought tolerance mechanism in rubber tree. Expressions of energy biosynthesis and ROS scavenging systems related genes, including HbCuZnSOD, HbMnSOD, HbAPX, HbCAT, HbCOA, HbATP, and HbACAT demonstrated that these genes were significantly up-regulated by drought stress, and reached a maximum at 3 dww, then followed by a decrease from 5 dww. These results suggested that drought stress adaption in rubber tree was governed by energy biosynthesis, antioxidative enzymes, and osmoregulation.

  • 相关文献

[1]Molecular cloning and characterization of a stress responsive peroxidase gene HbPRX42 from rubber tree. Wang, Li-Feng,Wang, Ji-Kun,An, Feng,Xie, Gui-Shui. 2016

[2]Effects of powdery mildew infection on chloroplast and mitochondrial functions in rubber tree. Wang, Li-Feng,Wang, Meng,Zhang, Yu.

[3]橡胶间种百香果的不同栽培模式探讨. 吴斌,杨其军,朱文彬,黄东梅,马伏宁,詹儒林,蒋雄英,宋顺. 2021

[4]An aquaporin gene from halophyte Sesuvium portulacastrum, SpAQP1, increases salt tolerance in transgenic tobacco. Chang, Wenjun,Liu, Xiwen,Zhu, Jiahong,Fan, Wei,Chang, Wenjun,Liu, Xiwen,Zhu, Jiahong,Fan, Wei,Zhang, Zhili.

[5]Latex dilution reaction during the tapping flow course of Hevea brasiliensis and the effect of Ethrel stimulation. An, Feng,Xie, Guishui,Zou, Zhi,An, Feng,Kong, Lingxue,Cai, Xiuqing,Rookes, James,Cahill, David.

[6]Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses. Yu, Y.,Cui, Y. C.,Ren, C.,Rocha, P. S. C. F.,Wang, M. L.,Xia, X. J.,Yu, Y.,Ren, C.,Peng, M.,Xu, G. Y.. 2016

[7]Expression profiling of HbWRKY1, an ethephon-induced WRKY gene in latex from Hevea brasiliensis in responding to wounding and drought. Zhang, Quanqi,Zhu, Jiahong,Ni, Yanmei,Cai, Yuanbao,Zhang, Zhili,Zhang, Quanqi,Ni, Yanmei,Zhang, Zhili. 2012

[8]Chromosomal Location of Traits Associated with Wheat Seedling Water and Phosphorus Use Efficiency under Different Water and Phosphorus Stresses. Cao, Hong-Xing,Zhang, Zheng-Bin,Xu, Ping,Shao, Hong-Bo,Sun, Cheng-Xu,Shao, Hong-Bo,Song, Wei-Yi,Shao, Hong-Bo. 2009

[9]The Discrepant and Similar Responses of Genome-Wide Transcriptional Profiles between Drought and Cold Stresses in Cassava. Zeng, Changying,Ding, Zehong,Zhou, Fang,Zhou, Yufei,Yang, Ruiju,Yang, Zi,Wang, Wenquan,Peng, Ming. 2017

[10]Differential Responses of Polyamines and Antioxidants to Drought in a Centipedegrass Mutant in Comparison to Its Wild Type Plants. Liu, Mingxi,Liu, Mingxi,Chen, Jingjing,Lu, Shaoyun,Chen, Jingjing,Guo, Zhenfei. 2017

[11]Performance of the invasive Eupatorium catarium and Ageratum conyzoides in comparison with a common native plant under varying levels of light and moisture. Huang, Qiaoqiao,Shen, Yide,Li, Xiaoxia,Fan, Zhiwei,Li, Shaoliang,Liu, Yan.

[12]Differential responses of lipid peroxidation and antioxidants in Alternanthera philoxeroides and Oryza sativa subjected to drought stress. Gao, Jianming,Xiao, Qiang,Ding, Liping,Chen, Mingjie,Yin, Liang,Li, Jinzhi,Zhou, Shiyi,He, Guangyuan,Gao, Jianming.

[13]Transcriptome-Wide Identification and Characterization of MYB Transcription Factor Genes in the Laticifer Cells of Hevea brasiliensis. Wang, Ying,Zhan, Di-Feng,Li, Hui-Liang,Guo, Dong,Zhu, Jia-Hong,Peng, Shi-Qing,Zhan, Di-Feng. 2017

[14]Three MADS-box genes of Hevea brasiliensis expressed during somatic embryogenesis and in the laticifer cells. Li, Hui-Liang,Wang, Ying,Guo, Dong,Peng, Shi-Qing,Tian, Wei-Min. 2011

[15]Acyl-CoA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree). Nie, Zhiyi,Wang, Yihang,Wu, Chuntai,Li, Yu,Kang, Guijuan,Qin, Huaide,Zeng, Rizhong,Nie, Zhiyi,Wang, Yihang,Wu, Chuntai,Li, Yu,Kang, Guijuan,Qin, Huaide,Zeng, Rizhong,Wang, Yihang. 2018

[16]The calcium-dependent protein kinase (CDPK) and CDPK-related kinase gene families in Hevea brasiliensis-comparison with five other plant species in structure, evolution, and expression. Xiao, Xiao-Hu,Sui, Jin-Lei,Qi, Ji-Yan,Fang, Yong-Jun,Tang, Chao-Rong,Yang, Meng,Hu, Song-Nian,Sui, Jin-Lei. 2017

[17]Molecular cloning, expression profiles and characterization of a novel translationally controlled tumor protein in rubber tree (Hevea brasiliensis). Li, Dejun,Deng, Zhi,Liu, Xianghong,Qin, Bi,Liu, Xianghong. 2013

[18]Overexpression of a Hevea brasiliensis ErbB-3 Binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis. Cheng, Han,Chen, Xiang,Zhu, Jianshun,Huang, Huasun. 2016

[19]A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). Tang, Chaorong,Qi, Jiyan,Li, Heping,Zhang, Cunliang,Wang, Yuekun. 2007

[20]Comparative Proteomics of Rubber Latex Revealed Multiple Protein Species of REF/SRPP Family Respond Diversely to Ethylene Stimulation among Different Rubber Tree Clones. Tong, Zheng,Wang, Dan,Sun, Yong,Yang, Qian,Meng, Xueru,Wang, Limin,Wang, Xuchu,Feng, Weiqiang,Wang, Xuchu,Li, Ling,Wurtele, Eve Syrkin,Wang, Xuchu,Li, Ling,Wurtele, Eve Syrkin,Li, Ling. 2017

作者其他论文 更多>>