您好,欢迎访问北京市农林科学院 机构知识库!

Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment - a field experiment in Hunan, China

文献类型: 外文期刊

作者: Zheng, Ruilun 1 ; Chen, Zheng 1 ; Cai, Chao 3 ; Tie, Baiqing 4 ; Liu, Xiaoli 4 ; Reid, Brian J. 5 ; Huang, Qing 3 ; Lei, 1 ;

作者机构: 1.Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, Peoples R China

2.Beijing Acad Agr & Forestry Sci, Res & Dev Ctr Grasses & Environm, Beijing 100097, Peoples R China

3.Chinese Acad Sci, Inst Urban Environm, Xiamen 361003, Peoples R China

4.Hunan Agr Univ, Coll Resource & Environm, Changsha 410128, Hunan, Peoples R China

5.Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England

6.Vilnius Gediminas Tech Univ, Inst Environm Protect, LT-10223 Vilnius, Lithuania

关键词: Biochar;Metal(loid);Rice (Oryza sativa L.);Soil contamination;Hazard quotient

期刊名称:ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH ( 影响因子:4.223; 五年影响因子:4.306 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A field experiment was conducted to investigate the effect of bean stalk (BBC) and rice straw (RBC) biochars on the bioavailability of metal(loid)s in soil and their accumulation into rice plants. Phytoavailability of Cd was most dramatically influenced by biochars addition. Both biochars significantly decreased Cd concentrations in iron plaque (35-81 %), roots (30-75 %), shoots (43-79 %) and rice grain (26-71 %). Following biochars addition, Zinc concentrations in roots and shoots decreased by 25.0-44.1 and 19.9-44.2 %, respectively, although no significant decreases were observed in iron plaque and rice grain. Only RBC significantly reduced Pb concentrations in iron plaque (65.0 %) and roots (40.7 %). However, neither biochar significantly changed Pb concentrations in rice shoots and grain. Arsenic phytoavailability was not significantly altered by biochars addition. Calculation of hazard quotients (HQ) associated with rice consumption revealed RBC to represent a promising candidate to mitigate hazards associated with metal(loid) bioaccumulation. RBC reduced Cd HQ from a 5.5 to 1.6. A dynamic factor's way was also used to evaluate the changes in metal(loid) plant uptake process after the soil amendment with two types of biochar. In conclusion, these results highlight the potential for biochar to mitigate the phytoaccumulation of metal(loid)s and to thereby reduce metal(loid) exposure associated with rice consumption.

  • 相关文献

[1]Mitigating cadmium accumulation in greenhouse lettuce production using biochar. Zheng, Ruilun,Li, Cui,Wang, Qinghai,Sun, Guoxin,Reid, Brian J.,Xie, Zubin,Zhang, Bo.

[2]Phytoremediation of Zn- and Cr-Contaminated Soil Using Two Promising Energy Grasses. Li, C.,Xiao, B.,Wang, Q. H.,Yao, S. H.,Wu, J. Y.,Xiao, B.. 2014

[3]CHROMIUM RESISTANCE OF DANDELION (TARAXACUM PLATYPECIDUM DIELS.) AND BERMUDAGRASS (CYNODON DACTYLON [LINN.] PERS.) IS ENHANCED BY ARBUSCULAR MYCORRHIZA IN Cr(VI)-CONTAMINATED SOILS. Wu, Song-Lin,Chen, Bao-Dong,Sun, Yu-Qing,Ren, Bai-Hui,Zhang, Xin,Wu, Song-Lin,Sun, Yu-Qing,Ren, Bai-Hui,Wang, You-Shan.

[4]Effect of Biochars from Rice Husk, Bran, and Straw on Heavy Metal Uptake by Pot-Grown Wheat Seedling in a Historically Contaminated Soil. Zheng, Ruilun,Xiao, Bo,Chen, Zheng,Wang, Xiaohui,Huang, Yizong,Sun, Guoxin,Cai, Chao. 2013

[5]Effects of biochar on nitrogen transformation and heavy metals in sludge composting. Liu, Wei,Huo, Rong,Liang, Shuxuan,Xu, Junxiang,Li, Jijin,Zhao, Tongke,Wang, Shutao.

[6]Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. Pan, Ligang,Yu, Xiangyang,Ying, Guangguo,Kookana, Rai S.,Ying, Guangguo,Pan, Ligang.

[7]The influence of particle size and feedstock of biochar on the accumulation of Cd, Zn, Pb, and As by Brassica chinensis L.. Zheng, Ruilun,Li, Cui,Chen, Jie,Wu, Juying,Wang, Qinghai,Sun, Guoxin,Xie, Zubin.

作者其他论文 更多>>