Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions
文献类型: 外文期刊
作者: Xie, Qiaoyun 1 ; Huang, Wenjiang 1 ; Dash, Jadunandan 3 ; Song, Xiaoyu 4 ; Huang, Linsheng 5 ; Zhao, Jinling 5 ; Wang, 1 ;
作者机构: 1.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100049, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Univ Southampton, Geog & Environm, Southampton SO17 1BJ, Hants, England
4.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
5.Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Peoples R China
关键词: Leaf area index;Hyperspectral remote sensing;Vegetation index;Nitrogen and water treatment
期刊名称:ADVANCES IN SPACE RESEARCH ( 影响因子:2.152; 五年影响因子:1.978 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Leaf area index (LAI) is an important indicator for monitoring crop growth conditions and forecasting grain yield. Many algorithms have been developed for remote estimation of the leaf area index of vegetation, such as using spectral vegetation indices, inversion of radiative transfer models, and supervised learning techniques. Spectral vegetation indices, mathematical combination of reflectance bands, are widely used for LAI estimation due to their computational simplicity and their applications ranged from the leaf scale to the entire globe. However, in many cases, their applicability is limited to specific vegetation types or local conditions due to species specific nature of the relationship used to transfer the vegetation indices to LAI. The overall objective of this study is to investigate the most suitable vegetation index for estimating winter wheat LAI under eight different types of fertilizer and irrigation conditions. Regression models were used to estimate LAI using hyperspectral reflectance data from the Pushbroom Hyperspectral Imager (PHI) and in-situ measurements. Our results showed that, among six vegetation indices investigated, the modified soil-adjusted vegetation index (MSAVI) and the normalized difference vegetation index (NDVI) exhibited strong and significant relationships with LAI, and thus were sensitive across different nitrogen and water treatments. The modified triangular vegetation index (MTVI2) confirmed its potential on crop LAI estimation, although second to MSAVI and NDVI in our study. The enhanced vegetation index (EVI) showed moderate performance. However, the ratio vegetation index (RVI) and the modified simple ratio index (MSR) predicted the least accurate estimations of LAI, exposing the simple band ratio index's weakness under different treatment conditions. The results support the use of vegetation indices for a quick and effective LAI mapping procedure that is suitable for winter wheat under different management practices. (C) 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Inversion of biophysical parameters of potato based on an active learning pool-based sampling strategy
作者:Ma, Yuanyuan;Song, Xiaoyu;Pan, Di;Feng, Haikuan;Yang, Guijun;Sun, Heguang;Zheng, Chunkai;Li, Pingping;Qiu, Chunxia;Zhang, Jie;Ma, Yuanyuan
关键词:PROSAIL radiative transfer model; look-up table (LUT); active learning; hybrid methods; Euclidean distance-based diversity (EBD) algorithm
-
Identification of seed maize fields from hyperspectral imagery by fusion of spectral and spatial features
作者:Cheng, Jinpeng;Cao, Xiaoyu;Wu, Qiang;Ma, Xinming;Xiong, Shuping;Cheng, Jinpeng;Yang, Hao;Zhang, Na;Yang, Guijun;Zhang, Na;Huang, Linsheng;Yan, Zhiyu;Wang, Hongbin;Yang, Guijun
关键词:Hyperspectral image classification; Seed maize; Class means matrix clustering; Morphology profiles; Machine learning
-
Multi-variety monitoring of potato late blight severity using UAV data with improved SMOTE-CS for small sample modeling and deep feature learning
作者:Sun, Heguang;Mai, Huanming;Deng, Xiaoling;Feng, Ziheng;Feng, Haikuan;Yang, Guijun;Song, XiaoYu;Mao, Yanzhi;Li, Qingquan;Guo, Mei;Guo, Wei
关键词:Potato late blight; Remote sensing; SMOTE-CS; Deep learning; Transfer learning
-
ICFMNet: an automated segmentation and 3D phenotypic analysis pipeline for plant, spike, and flag leaf type of wheat
作者:Xiao, Pengliang;Huang, Linsheng;Liang, Dong;Xiao, Pengliang;Wu, Sheng;Wen, Weiliang;Wang, Chuanyu;Lu, Xianju;Ge, Xiaofen;Li, Wenrui;Guo, Xinyu;Xiao, Pengliang;Wu, Sheng;Wen, Weiliang;Wang, Chuanyu;Lu, Xianju;Ge, Xiaofen;Li, Wenrui;Guo, Xinyu;Gao, Shiqing
关键词:3D phenotypic automated analysis; Semantic segmentation; Instance segmentation; Deep learning
-
Dynamic UAV data fusion and deep learning for improved maize phenological-stage tracking
作者:Feng, Ziheng;Zhao, Jiliang;Suo, Liunan;Feng, Ziheng;Sun, Heguang;Long, Huiling;Yang, Hao;Song, Xiaoyu;Feng, Haikuan;Xu, Bo;Yang, Guijun;Zhao, Chunjiang
关键词:Near real-time; Maize phenology; Deep learning; UAV; Multi-source data fusion
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal



