您好,欢迎访问北京市农林科学院 机构知识库!

Heterologous coexpression of Vitreoscilla hemoglobin and Bacillus megaterium glucanase in Streptomyces lydicus A02 enhanced its production of antifungal metabolites

文献类型: 外文期刊

作者: Wu, Huiling 1 ; Li, Jinjin 1 ; Dong, Dan 1 ; Liu, Ting 1 ; Zhang, Taotao 1 ; Zhang, Dianpeng 1 ; Liu, Weicheng 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Inst Plant & Environm Protect, Beijing 100097, Peoples R China

关键词: Vitreoscilla hemoglobin;Glucanase;Coexpression;Natamycin;Antifungal activity;Chitinase

期刊名称:ENZYME AND MICROBIAL TECHNOLOGY ( 影响因子:3.493; 五年影响因子:3.699 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Streptomyces lydicus A02 is a novel producer of commercially important polyene macrocyclic antibiotic natamycin and a potential biocontrol agent to several plant fungal diseases, including wilt caused by Fusarium oxysporum f. spp. To improve the natamycin production and the antifungal activity of S. lydicus A02, we coexpressed gene vgb encoding Vitreoscilla hemoglobin (VHb) and bgiC encoding Bacillus megaterium L103 glucanase, both under the control of the strong constitutive ermE* promoter, in S. lydicus A02. Our results showed that coexpressingVHb and glucanase improved cell growth, and the engineered strain produced 26.90% more biomass than the wild-type strain after 72 h fermentation in YSG medium. In addition, coexpressing genes encoding VHb. and glucanase led to increased natamycin production, higher endogenous chitinase activity and exogenous glucanase activity, as well as enhanced antifungal activity in the engineered S. lydicus AVG02 and AGV02, regardless of the position of the two genes on the plasmids. Compared with model strains, few reports have successfully coexpressed VHb and other foreign proteins in industrial strains. Our results illustrated an effective approach for improving antifungal activity in an industrial strain by the rational engineering of combined favorable factors. (C) 2015 Elsevier Inc. All rights reserved.

  • 相关文献

[1]Efficient transformation and expression of the glucanase gene from Bacillus megaterium in the biocontrol strain Streptomyces lydicus A02. Wu, Huiling,Dong, Dan,Li, Jinjin,Liu, Weicheng,Liu, Ting,Zhang, Taotao,Tian, Zhaofeng. 2014

[2]Expression of Paenibacillus polymyxa beta-1,3-1,4-glucanase in Streptomyces lydicus A01 improves its biocontrol effect against Botrytis cinerea. Li, Jinjin,Liu, Weicheng,Dong, Dan,Liu, Ting,Zhang, Taotao,Lu, Caige,Liu, Dewen,Zhang, Dianpeng,Wu, Huiling,Luo, Lijin.

[3]IDENTIFICATION OF AN ANTIFUNGAL METABOLITE PRODUCED BY A POTENTIAL BIOCONTROL ACTINOMYCES STRAIN A01. Lu, Cai Ge,Liu, Wei Cheng,Qiu, Ji Yan,Liu, Ting,Liu, De Wen,Lu, Cai Ge,Wang, Hui Min. 2008

[4]Optimization of the Fermentation Process for Streptomyces lydicus A02 Producing Natamycin. Weicheng Liu,Ting Liu,Caige Lu,Taotao Zhang,Dewen Liu,Yupeng Hua. 2012

[5]Inhibitory effect of chitosan on growth of the fungal phytopathogen, Sclerotinia sclerotiorum, and sclerotinia rot of carrot. Wang Qing,Zuo Jin-hua,Wang Qian,Na Yang,Gao Li-pu. 2015

[6]Characterization of Phenolic Compounds from Early and Late Ripening Sweet Cherries and Their Antioxidant and Antifungal Activities. Wang, Meng,Jiang, Nan,Wang, Yao,Jiang, Dongmei,Feng, Xiaoyuan,Wang, Meng,Jiang, Nan,Wang, Yao,Jiang, Dongmei,Feng, Xiaoyuan.

作者其他论文 更多>>