您好,欢迎访问甘肃省农业科学院 机构知识库!

High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems

文献类型: 外文期刊

作者: Liu, Yi-Xiang 1 ; Zhang, Wei-Ping 1 ; Sun, Jian-Hao 2 ; Li, Xiao-Fei 1 ; Christie, Peter 1 ; Li, Long 1 ;

作者机构: 1.China Agr Univ, Coll Resources & Environm Sci, Chinese Minist Educ, Key Lab Plant & Soil Interact, Beijing 100193, Peoples R China

2.Gansu Acad Agr Sci, Inst Soils Fertilizers & Water Saving Agr, Lanzhou 730070, Peoples R China

关键词: Phenotypic plasticity;Intercropping;Interspecific interaction;Root length density;Root distribution;Nitrogen uptake rate per unit root length

期刊名称:PLANT AND SOIL ( 影响因子:4.192; 五年影响因子:4.712 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Few studies have addressed the effects of root physiological plasticity on interspecific interactions. The present study aimed to investigate the plasticity of wheat and maize roots and their responses to nitrogen (N) application rates and neighboring species in wheat/maize intercropping.

  • 相关文献

[1]Root distribution and interactions between intercropped species. Li, L,Sun, JH,Zhang, FS,Guo, TW,Bao, XG,Smith, FA,Smith, SE.

[2]Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Xia, Hai-Yong,Christie, Peter,Zhang, Fu-Suo,Li, Long,Zhao, Jian-Hua,Sun, Jian-Hao,Bao, Xing-Guo,Christie, Peter.

[3]Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. He, Jin,Du, Yan-Lei,Wang, Tao,Jin, Yi,Xi, Yue,Zhang, Cong,Cui, Ting,Fang, Xiang-Wen,Li, Feng-Min,Turner, Neil C.,Yang, Ru-Ping.

[4]Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Xia, Hai-Yong,Wang, Zhi-Gang,Christie, Peter,Zhang, Fu-Suo,Li, Long,Zhao, Jian-Hua,Sun, Jian-Hao,Bao, Xing-Guo,Xia, Hai-Yong,Christie, Peter.

[5]Intercropping influenced the occurrence of stripe rust and powdery mildew in wheat. Luo, Huisheng,Jin, Ming'an,Jin, Shelin,Jia, Qiuzhen,Zhang, Bo,Huang, Jin,Wang, Xiaoming,Sun, Zhenyu,Shang, Xunwu,Cao, Shiqin,Duan, Xiayu,Zhou, Yilin,Chen, Wanquan,Liu, Taiguo.

[6]Intercropping enhances soil carbon and nitrogen. Cong, Wen-Feng,Li, Long,Zhang, Fu-Suo,Cong, Wen-Feng,van der Werf, Wopke,Hoffland, Ellis,Six, Johan,Sun, Jian-Hao,Bao, Xing-Guo.

[7]Interspecific complementary and competitive interactions between intercropped maize and faba bean. Li, L,Yang, SC,Li, XL,Zhang, FS,Christie, P.

[8]Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Wang, Zhi-gang,Li, Xiao-fei,Jin, Xin,Christie, Peter,Li, Long,Bao, Xing-guo,Zhao, Jian-hua,Sun, Jian-hao.

[9]Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Li, Long,Li, Shu-Min,Sun, Jian-Hao,Zhou, Li-Li,Bao, Xing-Guo,Zhang, Hong-Gang,Zhang, Fu-Suo.

[10]Community composition of ammonia-oxidizing bacteria in the rhizosphere of intercropped wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Song, Y. N.,Marschner, P.,Li, L.,Bao, X. G.,Sun, J. H.,Zhang, F. S.. 2007

[11]Wheat/maize or wheat/soybean strip intercropping II. Recovery or compensation of maize and soybean after wheat harvesting. Li, L,Sun, JH,Zhang, FS,Li, XL,Rengel, Z,Yang, SC. 2001

[12]Effect of phosphorus application and strip-intercropping on yield and some wheat-grain components in a wheat/maize/potato intercropping system. Zhang, Enhe,Huang, Gaobao,Zhang, Lijun,Wang, Gang,Zhang, Lijun,He, Chunyu,Zhang, Bo,Wang, Qi,Qiang, Shengjun. 2011

[13]Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Li, L,Sun, JH,Zhang, FS,Li, XL,Yang, SC,Rengel, Z. 2001

[14]Maize grain concentrations and above-ground shoot acquisition of micronutrients as affected by intercropping with turnip, faba bean, chickpea, and soybean. Xia HaiYong,Xue YanFang,Zhang FuSuo,Li Long,Zhao JianHua,Sun JianHao,Bao XingGuo,Eagling, Tristan. 2013

[15]Intercropping with wheat leads to greater root weight density and larger below-ground space of irrigated maize at late growth stages. Li, Long,Li, Long,Zhang, Fusuo,Sun, Jianhao. 2011

[16]Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Song, Y. N.,Zhang, F. S.,Marschner, P.,Fan, F. L.,Gao, H. M.,Bao, X. G.,Sun, J. H.,Li, L.. 2007

[17]Effects of intercropping and nitrogen application on nitrate present in the profile of an Orthic Anthrosol in Northwest China. Li, WX,Li, L,Sun, JH,Guo, TW,Zhang, FS,Bao, XG,Peng, A,Tang, C. 2005

[18]Effects of nitrogen and phosphorus fertilizers and intercropping on uptake of nitrogen and phosphorus by wheat, maize, and faba bean. Li, WX,Li, L,Sun, JH,Zhang, FS,Christie, P. 2003

作者其他论文 更多>>