您好,欢迎访问浙江省农业科学院 机构知识库!

Development of Genic Simple Sequence Repeat Panels for Population Classification of Chinese Cymbidium Species

文献类型: 外文期刊

作者: Li, Xiaobai 1 ; Li, Weirui 2 ; Di, Chenlu 2 ; Xie, Ming 1 ; Jin, Liang 1 ; Huang, Cheng 3 ; Wu, Dianxing 2 ;

作者机构: 1.Zhejiang Acad Agr Sci, Hangzhou 310021, Zhejiang, Peoples R China

2.Zhejiang Univ, Dept Appl Biosci, Int Atom Energy Agcy Collaborating Ctr, Hangzhou 310029, Zhejiang, Peoples R China

3.Shaoxing Cty Agr Technol Extens Stn, Shaoxing 312000, Peoples R China

关键词: microsatellite;population structure;population assignment;discriminatory power

期刊名称:JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE ( 影响因子:1.144; 五年影响因子:1.617 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Chinese cymbidiums (Cymbidium sp.) are important ornamental plants because of their foliage, flower shape, and fragrance. Well-known Chinese cymbidiums mainly include Cymbidium goeringii, Cymbidium faberi, Cymbidium ensifolium, Cymbidium kanran, and Cymbidium sinense. The population genetics of Chinese cymbidiums can be efficiently analyzed using small-scale marker panels with high discriminatory power. In this study, we tested several genic simple sequence repeats (SSRs) and built six genic SSR panels. The panels included several robust markers, which can rapidly assign Chinese cymbidium accessions to their source species. Fifty-three accessions of Chinese cymbidiums were analyzed using 25 markers, which exhibited polymorphism among five species. These markers were ranked according to their discriminatory scores (D scores). The program selected six markers to build an "overall'' panel for all Cymbidium classifications and yielded 95.16% population assignment accuracy. Considering one species as the "critical'' population and the four other species as one population, we built five genic SSR panels: C. ensifolium panel (four markers, 98.05% accuracy), C. faberi panel (six markers, 95.90% accuracy), C. goeringii panel (six markers, 95.15% accuracy), C. sinense panel (six markers, 96.35% accuracy), and C. kanran panel (five markers, 96.10% accuracy). Genetic distance matrices calculated using the "overall'' panels and those derived with the 25 markers were compared. Results showed a high correlation (R = 0.807) with statistical significance (P = 0.042). Moreover, "all panels'' revealed higher genetic variations among populations than "all markers.'' Hence, the developed panels are suitable for efficient population classification of Chinese cymbidiums.

  • 相关文献

[1]Genetic diversity and population structure of common bean (Phaseolus vulgaris) landraces from China revealed by a new set of EST-SSR markers. Xu, Shengchun,Hu, Qizan,Liu, Na,Ye, Lingwei,Gong, Yaming,Wang, Guofu,Mao, Weihua.

[2]Genetic diversity and population structure of cultivated bromeliad accessions assessed by SRAP markers. Zhang, Fei,Ge, Yaying,Wang, Weiyong,Shen, Xiaolan,Liu, Xiaojing,Liu, Jianxin,Tian, Danqing,Yu, Xinying. 2012

[3]Development of Cymbidium ensifolium genic-SSR markers and their utility in genetic diversity and population structure analysis in cymbidiums. Li, Xiaobai,Jin, Liang,Jin, Feng,Jackson, Aaron,Huang, Cheng,Li, Kehu,Shu, Xiaoli. 2014

[4]Evaluation of the genetic diversity and population structure of five indigenous and one introduced Chinese goose breeds using microsatellite markers. Li, Jinjun,Yuan, Qingyuan,Shen, Junda,Tao, Zhengrong,Li, Guoqing,Tian, Yong,Wang, Deqian,Chen, Li,Lui, Lizhi. 2012

[5]Genetic Structure and Eco-Geographical Differentiation of Cultivated Keng Rice (Oryza sativa L. subsp japonica) in China Revealed by Microsatellites. Zhang Dong-ling,Wang Mei-xing,Qi Yong-wen,Sun Jun-li,Wang Feng-mei,Li Jin-jie,Zhang Hong-liang,Li Zi-chao,Wang Mei-xing,Qi Yong-wen,Sun Jun-li. 2012

[6]Genetic diversity, population structure, pollen morphology and cross-compatibility among Chinese Cymbidiums. Li, Xiaobai,Xiang, Lin,Wang, Yan,Luo, Jie,Wu, Chao,Sun, Chongbo,Xie, Ming. 2014

[7]Genetic diversity and population structure of vegetable soybean (Glycine max (L.) Merr.) in China as revealed by SSR markers. Dong, Dekun,Fu, Xujun,Yuan, Fengjie,Zhu, Shenlong,Li, Baiquan,Yang, Qinghua,Yu, Xiaomin,Zhu, Danhua,Chen, Pengyin. 2014

[8]Genetic variations within a collection of anthuriums unraveled by morphological traits and AFLP markers. Ge, Yaying,Zhang, Fei,Shen, Xiaolan,Yu, Yongming,Pan, Xiaoyun,Liu, Xiaojing,Liu, Jianxin,Pan, Gangmin,Tian, Danqing.

[9]A study of genetic diversity of colored barley (Hordeum vulgare L.) using SSR markers. Hua, Wei,Zhu, Jinghuan,Shang, Yi,Wang, Junmei,Jia, Qiaojun,Yang, Jianming,Zhang, Xiaoqin,Li, Chengdao.

[10]Genome wide linkage disequilibrium in Chinese asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm: Implications for domestication history and genome wide association studies. Xu, P.,Wu, X.,Wang, B.,Liu, Y.,Lu, Z.,Wang, S.,Li, G.,Luo, J.,Ehlers, J. D.,Close, T. J.,Roberts, P. A..

[11]Genetic Diversity Analysis of Faba Bean (Vicia faba L.) Based on EST-SSR Markers. Gong Ya-ming,Xu Sheng-chun,Hu Qi-zan,Zhang Gu-wen,Ding Ju,Mao Wei-hua,Li Ze-yun. 2011

[12]Developing new SSR markers from ESTs of pea (Pisum sativum L.). Gong, Ya-ming,Xu, Sheng-chun,Hu, Qi-zan,Zhang, Gu-wen,Ding, Ju,Mao, Wei-hua,Li, Ya-dan. 2010

[13]Development and Application of Genic Simple Sequence Repeat Markers from the Transcriptome of Loquat. Li, Xiaoying,Xu, Hongxia,Chen, Junwei,Feng, Jianjun.

[14]Genetic diversity and relationships among loose-curd cauliflower and related varieties as revealed by microsatellite markers. Zhao, Zhenqing,Cao, Jiashu,Zhao, Zhenqing,Gu, Honghui,Sheng, Xiaoguang,Yu, Huifang,Wang, Jiansheng,Zhao, Junwei.

作者其他论文 更多>>