The antihyperlipidemic activities of enzymatic and acidic intracellular polysaccharides by Termitomyces albuminosus
文献类型: 外文期刊
作者: Zhao, Huajie 1 ; Li, Shangshang 2 ; Zhang, Jianjun 2 ; Che, Gen 3 ; Zhou, Meng 4 ; Liu, Min 2 ; Zhang, Chen 2 ; Xu, Nuo 2 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Engn Res Ctr Edible Mushroom, Inst Plant & Environm Protect, Key Lab Urban Agr North,Minist Agr, Beijing 100097, Peoples R China
2.Shandong Agr Univ, Coll Life Sci, Tai An 271018, Shandong, Peoples R China
3.Shandong Acad Agr Sci, Jinan 250100, Peoples R China
4.Qual & Safety Monito
关键词: Antihyperlipidemic;Antioxidant;Hepatoprotective;Intracellular polysaccharides;Termitomyces albuminosus
期刊名称:CARBOHYDRATE POLYMERS ( 影响因子:9.381; 五年影响因子:8.678 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Two polysaccharides, EIPS and AIPS were obtained by the hydrolysis of IPS from Termitomyces albuminosus, and their pharmacological effects on blood lipid profiles metabolism and oxidative stress were investigated. The results demonstrated that EIPS was superior to IPS and AIPS on reducing hepatic lipid levels and preventing oxidative stress by improving serum enzyme activities (ALT, AST, and ALP), serum lipid levels (TC, TG, HDL-C, LDL-C and VLDL-C), hepatic lipid levels (TC and TG), and antioxidant status (SOD, GSH-Px, CAT, T-AOC, MDA, and LPO). These conclusions indicated that EIPS, AIPS and IPS might be suitable for functional foods and natural drugs on preventing the high-fat emulsion-induced hyperlipidemia. In addition, the monosaccharide compositions of IPS and its hydrolyzate were also processed. (C) 2016 Elsevier Ltd. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Pristine/magnesium-loaded biochar and ZVI affect rice grain arsenic speciation and cadmium accumulation through different pathways in an alkaline paddy soil
作者:Zhang, Chen;Shi, Dong;Wang, Chao;Hu, Yanxia;Li, Xiaona;Hou, Yanhui;Zheng, Ruilun;Zhang, Chen;Li, Huafen;Sun, Guoxin
关键词:Cadmium (Cd); Arsenic (As) speciation; Co-contamination; Magnesium-loaded biochar; Zero-valent iron (ZVI); Rice
-
Effect of pesticide application techniques on thrips control in the cowpea flowering stage
作者:Jin, Ye;Luo, Luna;Zhong, Yuan;Xu, Shaoqing;Song, Jianli;Jin, Ye;Luo, Luna;Zhong, Yuan;Xu, Shaoqing;Song, Jianli;Zhang, Ruirui;Li, Zhiquan;Liu, Min;Zhong, Yuan
关键词:cowpea thrips; adjuvant; air-assisted spray; application technique
-
Extraction of the upright maize straw by integrating UAV multispectral and DSM data
作者:Chao, Aosheng;Xing, Enguang;Gao, Yunbing;Li, Cunjun;Qin, Yuan;Zhu, Chengyang;Liu, Yu;Chao, Aosheng;Zhu, Chengyang;Zhu, Qingwei
关键词:Upright maize straw; UAV; New straw index; Spectral characteristics; Digital surface model
-
Estimation of SOC using VNIR and MIR hyperspectral data based on spectral-to-image transforming and multi-channel CNN
作者:Tang, Aohua;Yang, Guijun;Li, Zhenhong;Chen, Weinan;Zhang, Jing;Tang, Aohua;Yang, Guijun;Pan, Yuchun;Liu, Yu;Long, Huiling;Chen, Weinan;Zhang, Jing;Yang, Yue;Yang, Xiaodong;Xu, Bo;Yang, Yue
关键词:MIR spectral; Multi-channel-CNN; SIT; Soil organic carbon; VNIR spectral
-
Valorization of dual waste: Heavy metal mitigation and carbon/nutrient regulation in hydrochar via co-hydrothermal carbonization of sewage sludge and sawdust
作者:Zhang, Chen;Wang, Qinghai;Chen, Guo;Zheng, Ruilun;Sun, Guoxin;Zhang, Chen;Wang, Ke;Yang, Yu-Ping;Chen, Jialin
关键词:
-
Two sexually compatible monokaryons from a heterokaryotic Lentinula edodes strain respond differently to heat stress
作者:Guo, Yuan;Gao, Qi;Liu, Yu;Wang, Shouxian;Jiao, Wenyu;Zhang, Yajie;Tan, Meiting
关键词:
Lentinula edodes ; heat stress response; metabolomics; transcriptomics; multi-omics integration -
A machine learning system to evaluate physiological parameters and heat stress for sows in gestation crates
作者:Zhuang, Yanrong;Ji, Hengyi;Liu, Yu;Li, Shulei;Wang, Chaoyuan;Teng, Guanghui;Zhuang, Yanrong;Ji, Hengyi;Liu, Yu;Li, Shulei;Wang, Chaoyuan;Teng, Guanghui;Zhuang, Yanrong;Ji, Hengyi;Liu, Yu;Li, Shulei;Wang, Chaoyuan;Teng, Guanghui;Zhuang, Yanrong;Zhuang, Yanrong;Cao, Mengbing;Zhang, Jinrui
关键词:Sow; Heat stress; Physiological parameters prediction; Machine learning; LabVIEW



