文献类型: 外文期刊
作者: Tan, Wenxue 1 ; Zhao, Chunjiang 3 ; Wu, Huarui 3 ;
作者机构: 1.Beijing Univ Technol, Coll Comp Sci, Beijing 100022, Peoples R China
2.Hunan Univ Arts & Sci, Changde 415000, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
关键词: Lesion image;CNN;Deep network;Momentum learning;Intelligent alerting
期刊名称:MULTIMEDIA TOOLS AND APPLICATIONS ( 影响因子:2.757; 五年影响因子:2.517 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Sensors and Internet of things (IoT) have been widely used in the digitalized orchards. Traditional disease-pest recognition and early warning systems, which are based on knowledge rule, expose many defects, discommodities, and it is difficult to meet current production management requirements of the fresh planting environment. On purpose to realize an intelligent unattended alerting for disease-pest of fruit-melon, this paper presents the convolutional neural network (CNN) for recognition of fruit-melon skin lesion image which is real-timely acquired by an infrared video sensor, which network is grounded upon so-called momentum deep learning rule. More specifically, (1) a suite of transformation methods of apple skin lesion image is devised to simulate orientation and light disturbance which always occurs in orchards, then to output a self-contained set of almost all lesion images which might appear in various dynamic sensing environment; and (2) the rule of variable momentum learning is formulated to update the free parameters of CNN. Experimental results demonstrate that the proposed presents a satisfying accuracy and recall rate which are up to 97.5 %, 98.5 % respectively. As compared with some shallow learning algorithms and generally accepted deep learning ones, it also offers a gratifying smoothness, stableness after convergence and a quick converging speed. In addition, the statistics from experiments of different benchmark data-sets suggests it is very effective to recognize image pattern.
- 相关文献
作者其他论文 更多>>
-
Research on Positioning and Navigation System of Greenhouse Mobile Robot Based on Multi-Sensor Fusion
作者:Cheng, Bo;Li, Xiaoyue;Zhang, Ning;Song, Weitang;He, Xueying;Wu, Huarui
关键词:agricultural greenhouse; navigation robot; multi-sensor fusion; ultra-wideband; inertial measurement unit; odometry; rangefinder
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
An ultra-lightweight method for individual identification of cow-back pattern images in an open image set
作者:Wang, Rong;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Wang, Rong;Zhao, Chunjiang;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Ru, Lin
关键词:Cow-back pattern; Cow recognition; LightCowsNet; Open image set; Deep learning