文献类型: 外文期刊
作者: Tan, Wenxue 1 ; Zhao, Chunjiang 3 ; Wu, Huarui 3 ;
作者机构: 1.Beijing Univ Technol, Coll Comp Sci, Beijing 100022, Peoples R China
2.Hunan Univ Arts & Sci, Changde 415000, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
关键词: Lesion image;CNN;Deep network;Momentum learning;Intelligent alerting
期刊名称:MULTIMEDIA TOOLS AND APPLICATIONS ( 影响因子:2.757; 五年影响因子:2.517 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Sensors and Internet of things (IoT) have been widely used in the digitalized orchards. Traditional disease-pest recognition and early warning systems, which are based on knowledge rule, expose many defects, discommodities, and it is difficult to meet current production management requirements of the fresh planting environment. On purpose to realize an intelligent unattended alerting for disease-pest of fruit-melon, this paper presents the convolutional neural network (CNN) for recognition of fruit-melon skin lesion image which is real-timely acquired by an infrared video sensor, which network is grounded upon so-called momentum deep learning rule. More specifically, (1) a suite of transformation methods of apple skin lesion image is devised to simulate orientation and light disturbance which always occurs in orchards, then to output a self-contained set of almost all lesion images which might appear in various dynamic sensing environment; and (2) the rule of variable momentum learning is formulated to update the free parameters of CNN. Experimental results demonstrate that the proposed presents a satisfying accuracy and recall rate which are up to 97.5 %, 98.5 % respectively. As compared with some shallow learning algorithms and generally accepted deep learning ones, it also offers a gratifying smoothness, stableness after convergence and a quick converging speed. In addition, the statistics from experiments of different benchmark data-sets suggests it is very effective to recognize image pattern.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding
-
Water phase distribution and its dependence on internal structure in soaking maize kernels: a study using low-field nuclear magnetic resonance and X-ray micro-computed tomography
作者:Wang, Baiyan;Zhao, Chunjiang;Wang, Baiyan;Gu, Shenghao;Wang, Juan;Wang, Guangtao;Guo, Xinyu;Zhao, Chunjiang
关键词:phenotyping; hydration; water absorption; seed emergence; kernel moisture



