Online Detection of Watercore Apples by Vis/NIR Full-Transmittance Spectroscopy Coupled with ANOVA Method
文献类型: 外文期刊
作者: Zhang, Yifei 1 ; Yang, Xuhai 1 ; Cai, Zhonglei 1 ; Fan, Shuxiang 2 ; Zhang, Haiyun 1 ; Zhang, Qian 1 ; Li, Jiangbo 1 ;
作者机构: 1.Shihezi Univ, Coll Mech & Elect Engn, Shihezi 832003, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Intelligent Equipment Res Ctr, Beijing 100097, Peoples R China
关键词: watercore apple; online detection; ANOVA analysis; band ratio; threshold discrimination
期刊名称:FOODS ( 影响因子:5.561; 五年影响因子:5.94 )
ISSN:
年卷期: 2021 年 10 卷 12 期
页码:
收录情况: SCI
摘要: Watercore is an internal physiological disorder affecting the quality and price of apples. Rapid and non-destructive detection of watercore is of great significance to improve the commercial value of apples. In this study, the visible and near infrared (Vis/NIR) full-transmittance spectroscopy combined with analysis of variance (ANOVA) method was used for online detection of watercore apples. At the speed of 0.5 m/s, the effects of three different orientations (O1, O2, and O3) on the discrimination results of watercore apples were evaluated, respectively. It was found that O3 orientation was the most suitable for detecting watercore apples. One-way ANOVA was used to select the characteristic wavelengths. The least squares-support vector machine (LS-SVM) model with two characteristic wavelengths obtained good performance with the success rates of 96.87% and 100% for watercore and healthy apples, respectively. In addition, full-spectrum data was also utilized to determine the optimal two-band ratio for the discrimination of watercore apples by ANOVA method. Study showed that the threshold discrimination model established based on O3 orientation had the same detection accuracy as the optimal LS-SVM model for samples in the prediction set. Overall, full-transmittance spectroscopy combined with the ANOVA method was feasible to online detect watercore apples, and the threshold discrimination model based on two-band ratio showed great potential for detection of watercore apples.
- 相关文献
作者其他论文 更多>>
-
Determination of the SSC in oranges using Vis-NIR full transmittance hyperspectral imaging and spectral visual coding: A practical solution to the scattering problem of inhomogeneous mixtures
作者:Cai, Letian;Li, Jiangbo;Zhang, Yizhi;Hao, Haoyuan;Cai, Letian;Zhang, Junyi;Zhang, Hailiang;Zhang, Yizhi
关键词:Citrus; SSC detection; Hyperspectral transmittance imaging; Spectral visual coding; Feature selection
-
Hyperspectral transmittance imaging detection of early decayed oranges caused by Penicillium digitatum using NFINDR-JMSAM algorithm with spectral feature separating
作者:Cai, Letian;Chen, Liping;Li, Xuetong;Zhang, Yizhi;Shi, Ruiyao;Li, Jiangbo;Cai, Letian
关键词:Citrus; Decay detection; Hyperspectral transmittance imaging; NFINDR-JMSAM; Spectral separation
-
Construction of a stable YOLOv8 classification model for apple bruising detection based on physicochemical property analysis and structured-illumination reflectance imaging
作者:Zhang, Junyi;Chen, Liping;Cai, Zhonglei;Shi, Ruiyao;Cai, Letian;Li, Jiangbo;Zhang, Junyi;Luo, Liwei;Yang, Xuhai;Li, Jiangbo
关键词:Apple; Bruising detection; Physicochemical property analysis; Structured-illumination reflectance imaging; Deep learning model
-
Smartphone-assisted fluorescent film based on the Flu grafted on Eu-MOF for real-time monitoring of fresh-cut fruit freshness
作者:Zhang, Zhepeng;Gao, Mingjie;Zou, Xiaobo;Guo, Zhiming;Zhang, Liang;Li, Jiangbo;El-Seedi, Hesham R.;Guo, Zhiming;El-Seedi, Hesham R.
关键词:Metal-organic framework; Grafted materials; Multifunctional filler; Fluorescence film; Fresh-cut fruits; Smartphone application
-
Achieving optimal cutting results for melon rootstock: Precision linear cutting and parameter simulation optimization
作者:Chen, Shan;Feng, Qingchun;Li, Tao;Jiang, Kai;Zhao, Chunjiang;Chen, Shan;Feng, Qingchun;Kan, Za;Meng, Hewei;Zhao, Chunjiang;Zhang, Qian;Jia, Zhiwei;Zhao, Chunjiang;Li, Tao;Jiang, Kai
关键词:Grafting robot; Rootstock cutting; EDEM; Cutting model; Response surface test; Parameter optimization
-
Navigation line detection algorithm for corn spraying robot based on improved LT-YOLOv10s
作者:Diao, Zhihua;Ma, Shushuai;Li, Xingyi;Zhao, Suna;He, Yan;Li, Jiangbo;Zhang, Jingcheng;Zhang, Baohua;Jiang, Liying;Jiang, Liying
关键词:Deep learning; Corn spraying robot; Navigation line detection; Lightweight network
-
Detection of bruising in pear with varying bruising degrees and formation times by using SIRI technique combining with texture feature-based LS-SVM and ResNet-18-based CNN model
作者:Li, Jiangbo;Zhang, Junyi;Mei, Mengwen;Li, Xuetong;Shi, Ruiyao;Cai, Zhonglei;Diao, Zhihua
关键词:Pears; Bruising detection; Convolutional neural network; Machine learning; Enhanced imaging



