Online Detection of Watercore Apples by Vis/NIR Full-Transmittance Spectroscopy Coupled with ANOVA Method
文献类型: 外文期刊
作者: Zhang, Yifei 1 ; Yang, Xuhai 1 ; Cai, Zhonglei 1 ; Fan, Shuxiang 2 ; Zhang, Haiyun 1 ; Zhang, Qian 1 ; Li, Jiangbo 1 ;
作者机构: 1.Shihezi Univ, Coll Mech & Elect Engn, Shihezi 832003, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Intelligent Equipment Res Ctr, Beijing 100097, Peoples R China
关键词: watercore apple; online detection; ANOVA analysis; band ratio; threshold discrimination
期刊名称:FOODS ( 影响因子:5.561; 五年影响因子:5.94 )
ISSN:
年卷期: 2021 年 10 卷 12 期
页码:
收录情况: SCI
摘要: Watercore is an internal physiological disorder affecting the quality and price of apples. Rapid and non-destructive detection of watercore is of great significance to improve the commercial value of apples. In this study, the visible and near infrared (Vis/NIR) full-transmittance spectroscopy combined with analysis of variance (ANOVA) method was used for online detection of watercore apples. At the speed of 0.5 m/s, the effects of three different orientations (O1, O2, and O3) on the discrimination results of watercore apples were evaluated, respectively. It was found that O3 orientation was the most suitable for detecting watercore apples. One-way ANOVA was used to select the characteristic wavelengths. The least squares-support vector machine (LS-SVM) model with two characteristic wavelengths obtained good performance with the success rates of 96.87% and 100% for watercore and healthy apples, respectively. In addition, full-spectrum data was also utilized to determine the optimal two-band ratio for the discrimination of watercore apples by ANOVA method. Study showed that the threshold discrimination model established based on O3 orientation had the same detection accuracy as the optimal LS-SVM model for samples in the prediction set. Overall, full-transmittance spectroscopy combined with the ANOVA method was feasible to online detect watercore apples, and the threshold discrimination model based on two-band ratio showed great potential for detection of watercore apples.
- 相关文献
作者其他论文 更多>>
-
Advancements of UAV and Deep Learning Technologies for Weed Management in Farmland
作者:Zhang, Jinmeng;Yu, Feng;Zhang, Qian;Wang, Ming;Yu, Jinying;Tan, Yarong;Yu, Feng
关键词:unmanned aerial vehicle; convolutional neural network; deep learning; weed detection; weed management
-
An Original UV Adhesive Watermelon Grafting Method, the Grafting Device, and Experimental Verification
作者:Zhang, Xin;Kong, Linghao;Lu, Hanwei;Zhang, Xin;Feng, Qingchun;Li, Tao;Jiang, Kai;Zhang, Qian
关键词:watermelon grafting; UV adhesive; fluent; VOF-DPM numerical simulation; grafting device; test
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
Changes in climate attributes and harvest area structures jointly determined spatial-temporal variations in water footprint of maize in the Beijing-Tianjin-Hebei region
作者:Huai, Heju;Zhang, Qian;Liu, Min;Tang, Xiumei;Huai, Heju;Zhang, Qian;Liu, Min;Tang, Xiumei
关键词:Beijing-Tianjin-Hebei; Irrigation; Maize production; Rainfall; Water use efficiency
-
Online detection of lycopene content in the two cultivars of tomatoes by multi-point full transmission Vis-NIR spectroscopy
作者:Li, Sheng;Wang, Qingyan;Shi, Ruiyao;Li, Jiangbo;Li, Sheng;Yang, Xuhai;Zhang, Qian
关键词:Tomato quality; Nondestructive evaluation; Chemometrics; Least angle regression; Model optimization
-
Detection of Insect-Damaged Maize Seed Using Hyperspectral Imaging and Hybrid 1D-CNN-BiLSTM Model
作者:Wang, Zheli;Chen, Liping;Wang, Zheli;Fan, Shuxiang;An, Ting;Zhang, Chi;Chen, Liping;Huang, Wenqian
关键词:Maize seed; Insect infestation; Hyperspectral imaging; Deep learning; BiLSTM
-
Detection of early decayed oranges by using hyperspectral transmittance imaging and visual coding techniques coupled with an improved deep learning model
作者:Cai, Letian;Zhang, Yizhi;Shi, Ruiyao;Li, Xuetong;Li, Jiangbo;Cai, Letian;Zhang, Junyi;Diao, Zhihua
关键词:Citrus decay detection; Sample expansion; Spectral visual encoding; Improved deep learning; Model optimization



