您好,欢迎访问浙江省农业科学院 机构知识库!

Isolation and characterization of putative functional long terminal repeat retrotransposons in the Pyrus genome

文献类型: 外文期刊

作者: Jiang, Shuang 1 ; Cai, Danying 3 ; Sun, Yongwang 1 ; Teng, Yuanwen 1 ;

作者机构: 1.Zhejiang Univ, Dept Hort, Hangzhou 310058, Zhejiang, Peoples R China

2.Shanghai Acad Agr Sci, Forest & Fruit Tree Inst, Shanghai 201403, Peoples R China

3.Zhejiang Acad Agr Sci, Inst Hort, Hangzhou 310021, Zhejiang, Peoples R China

4.Minist Agr China, Key Lab Hort Plant Growth Dev & Qual Improvement, Hangzhou 310058, Zhejiang, Peoples R China

5.Zhejiang Prov Key Lab Hort Plant Integrat Biol, Hangzhou 310058, Zhejiang, Peoples R China

关键词: Retrotransposons;Insertion time;Distribution;Genetic diversity;Pyrus

期刊名称:MOBILE DNA ( 影响因子:4.06; 五年影响因子:5.82 )

ISSN: 1759-8753

年卷期: 2016 年 7 卷

页码:

收录情况: SCI

摘要: Background: Long terminal repeat (LTR)-retrotransposons constitute 42.4 % of the genome of the 'Suli' pear (Pyrus pyrifolia white pear group), implying that retrotransposons have played important roles in Pyrus evolution. Therefore, further analysis of retrotransposons will enhance our understanding of the evolutionary history of Pyrus. Results: We identified 1836 LTR-retrotransposons in the 'Suli' pear genome, of which 440 LTR-retrotransposons were predicted to contain at least two of three gene models (gag, integrase and reverse transcriptase). Because these were most likely to be functional transposons, we focused our analyses on this set of 440. Most of the LTR-retrotransposons were estimated to have inserted into the genome less than 2.5 million years ago. Sequence analysis showed that the reverse transcriptase component of the identified LTR-retrotransposons was highly heterogeneous. Analyses of transcripts assembled from RNA-Seq databases of two cultivars of Pyrus species showed that LTR-retrotransposons were expressed in the buds and fruit of Pyrus. A total of 734 coding sequences in the 'Suli' genome were disrupted by the identified LTR-retrotransposons. Five high-copy-number LTR-retrotransposon families were identified in Pyrus. These families were rarely found in the genomes of Malus and Prunus, but were distributed extensively in Pyrus and abundance varied between species. Conclusions: We identified potentially functional, full-length LTR-retrotransposons with three gene models in the 'Suli' genome. The analysis of RNA-seq data demonstrated that these retrotransposons are expressed in the organs of pears. The differential copy number of LTR-retrotransposon families between Pyrus species suggests that the transposition of retrotransposons is an important evolutionary force driving the genetic divergence of species within the genus.

  • 相关文献

[1]Spatial distribution of soil organic matter in tillage layers in a southern China basin using classifications and spatial interpolation algorithms. Deng, X. F.,Lv, X. N.,Zhang, M. H.,Li, S. Q.. 2013

[2]Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Ping, L. F.,Luo, Y. M.,Zhang, H. B.,Li, Q. B.,Wu, L. H..

[3]Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. Yin, Yeshi,Wang, Yu,Zhu, Liying,Liu, Wei,Liao, Ningbo,Wang, Xin,Wang, Yu,Jiang, Mizu,Zhu, Baoli,Yu, Hongwei D.,Xiang, Charlie.

[4]Polycyclic aromatic hydrocarbons in urban soils of Hangzhou: status, distribution, sources, and potential risk. Yu, Guoguang,Zhang, Zhiheng,Yang, Guiling,Zheng, Weiran,Xu, Lihong,Cai, Zheng.

[5]Genetic diversity and population structure of cultivated bromeliad accessions assessed by SRAP markers. Zhang, Fei,Ge, Yaying,Wang, Weiyong,Shen, Xiaolan,Liu, Xiaojing,Liu, Jianxin,Tian, Danqing,Yu, Xinying. 2012

[6]Development of Cymbidium ensifolium genic-SSR markers and their utility in genetic diversity and population structure analysis in cymbidiums. Li, Xiaobai,Jin, Liang,Jin, Feng,Jackson, Aaron,Huang, Cheng,Li, Kehu,Shu, Xiaoli. 2014

[7]Structural characterization and applications of ITS2 from rice leaffolders Cnaphalocrocis medinalis and Marasmia patnalis (Lepidoptera: Pyralidae). Yang, Yajun,Wu, Zhihong,Xu, Hongxing,Zheng, Xusong,Lu, Zhongxian. 2017

[8]Evaluation of the genetic diversity and population structure of five indigenous and one introduced Chinese goose breeds using microsatellite markers. Li, Jinjun,Yuan, Qingyuan,Shen, Junda,Tao, Zhengrong,Li, Guoqing,Tian, Yong,Wang, Deqian,Chen, Li,Lui, Lizhi. 2012

[9]Genetic diversity and relationships among 47 loquat varieties revealed by EST-SSR markers. Li, Xiao-ying,Xu, Hong-xia,Chen, Jun-wei. 2013

[10]Development of 107 SSR markers from whole genome shotgun sequences of Chinese bayberry (Myrica rubra) and their application in seedling identification. Jia, Hui-min,Shen, Yu-tong,Jiao, Yun,Dong, Xiao,Jia, Hui-juan,Du, Fang,Gao, Zhong-shan,Wang, Guo-yun,Liang, Sen-miao,Zhou, Chao-chao,Mao, Wei-hua. 2014

[11]Genetic diversity, population structure, pollen morphology and cross-compatibility among Chinese Cymbidiums. Li, Xiaobai,Xiang, Lin,Wang, Yan,Luo, Jie,Wu, Chao,Sun, Chongbo,Xie, Ming. 2014

[12]Genetic diversity and population structure of vegetable soybean (Glycine max (L.) Merr.) in China as revealed by SSR markers. Dong, Dekun,Fu, Xujun,Yuan, Fengjie,Zhu, Shenlong,Li, Baiquan,Yang, Qinghua,Yu, Xiaomin,Zhu, Danhua,Chen, Pengyin. 2014

[13]Genetic Diversity Analysis of Faba Bean (Vicia faba L.) Based on EST-SSR Markers. Gong Ya-ming,Xu Sheng-chun,Hu Qi-zan,Zhang Gu-wen,Ding Ju,Mao Wei-hua,Li Ze-yun. 2011

[14]Development of EST-SSR markers to study genetic diversity in hyacinth bean (Lablab purpureus L.). Zhang, Guwen,Xu, Shengchun,Gong, Yaming,Hu, Qizan,Mao, Weihua. 2013

[15]Genetic evidence of local adaption and long distance migration in Blumeria graminis f. sp hordei populations from China. Zhu, Jinghuan,Shang, Yi,Hua, Wei,Wang, Junmei,Jia, Qiaojun,Yang, Jianming,Zhou, Yijun,Liu, Mengdao.

[16]Assessment of genetic diversity by simple sequence repeat markers among forty elite varieties in the germplasm for malting barley breeding. Wang, Jun-mei,Yang, Jian-ming,Zhu, Jing-huan,Jia, Qiao-jun,Tao, Yue-zhi. 2010

[17]Evaluation of genetic diversity in self-incompatible broccoli DH lines assessed by SRAP markers. Yu, Huifang,Zhao, Zhenqing,Sheng, Xiaoguang,Wang, Jiansheng,Gu, Honghui. 2011

[18]Development and polymorphism of Vigna unguiculata ssp unguiculata microsatellite markers used for phylogenetic analysis in asparagus bean (Vigna unguiculata ssp sesquipedialis (L.) Verdc.). Xu, Pei,Wu, Xiaohua,Wang, Baogen,Liu, Yonghua,Hu, Tingting,Lu, Zhongfu,Li, Guojing,Qin, Dehui,Ehlers, Jeffery D.,Close, Timothy J.. 2010

[19]Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers. Korir, N. K.,Tao, R.,Li, X.,Kayesh, E.,Li, A.,Zhen, W.,Diao, W.,Wang, S.,Li, X.. 2014

[20]Determination of the genetic diversity of vegetable soybean [Glycine max (L.) Merr.] using EST-SSR markers. Zhang, Gu-wen,Xu, Sheng-chun,Hu, Qi-zan,Gong, Ya-ming,Mao, Wei-hua. 2013

作者其他论文 更多>>