您好,欢迎访问浙江省农业科学院 机构知识库!

Quantitative Trait Locus Analysis for Rice Yield Traits under Two Nitrogen Levels

文献类型: 外文期刊

作者: Feng Yue 1 ; Zhai Rong-rong 2 ; Lin Ze-chuan 1 ; Cao Li-yong 1 ; Wei Xing-hua 1 ; Cheng Shi-hua 1 ;

作者机构: 1.Chinese Natl Ctr Rice Improvement, State Key Lab Rice Biol, China Natl Rice Res Inst, Hangzhou 310006, Zhejiang, Peoples R China

2.Zhejiang Acad Agr Sci, Inst Crop & Nucl Technol Utilizat, Hangzhou 310021, Zhejiang, Peoples R China

关键词: nitrogen;quantitative trait locus;rice;yield trait

期刊名称:RICE SCIENCE ( 影响因子:3.333; 五年影响因子:4.226 )

ISSN: 1672-6308

年卷期: 2015 年 22 卷 3 期

页码:

收录情况: SCI

摘要: A recombinant inbred line population derived from a super hybrid rice Xieyou 9308 (Xieqingzao B/Zhonghui 9308) and its genetic linkage map were used to detect quantitative trait loci (QTLs) for rice yield traits under the low and normal nitrogen (N) levels. A total of 52 QTLs for yield traits distributed in 27 regions on 9 chromosomes were detected, with each QTL explaining 4.93%-26.73% of the phenotypic variation. Eleven QTLs were simultaneously detected under the two levels, and 30 different QTLs were detected under the two N levels, thereby suggesting that the genetic bases controlling rice growth under the low and normal N levels were different. QTLs for number of panicles per plant, number of spikelets per panicle, number of filled grains per panicle, and grain density per panicle under the two N levels were detected in the RM135-RM168 interval on chromosome 3. QTLs for number of spikelets per panicle and number of filled grains per panicle under the two N levels, as well as number of panicles per plant and grain density per panicle, under the low N level, were detected in the RM5556-RM310 interval on chromosome 8. The above described QTLs shared similar regions with previously reported QTLs for rice N recycling.

  • 相关文献

[1]Detection of epistatic interaction of two QTLs, gw8.1 and gw9.1, underlying grain weight using nearly isogenic lines in rice. Jin, Feng-Xue,Ji, Shi-Dong,Kang, Ju-Won,Ahn, Sang-Nag,Xie, Xiao-Bo,Ju, Hong-Guang.

[2]Modeling and Analyzing the Influence of Blade Shape on Rice Canopy Structure. Liyong Cao,Dong Li,Junmin Wang,Zhigang Zhan. 2012

[3]Modeling and analyzing the influence of blade shape on rice canopy structure. Li, Dong,Wang, Junmin,Zhan, Zhigang,Cao, Liyong. 2012

[4]Mapping of leaf and neck blast resistance genes with RFLP, RAPD and resistance gene analogs in rice. K.-L. ZHENG,R.-Y. CHAI,M.-Z. JIN,J.-L. WU,Y.-Y. FAN,H. LEUNG,J.-Y. ZHUANG. 2000

[5]Monitoring Leaf Chlorophyll Fluorescence with Spectral Reflectance in Rice (Oryza sativa L.). Hao Zhang,Lian-feng Zhu,Hao Hu,Ke-feng Zheng,Qian-yu Jin. 2011

[6]DEVELOPMENT AND APPLICATION OF THE CONSULTING SYSTEM OF PRECISION FERTILIZATION IN RICE. Xiaonan Lii,Wanzhu Ma,Zhouqiao Ren,Xiaojia Chen. 2005

[7]Effects of Nitrogenous Fertilization in Rice Fields on the Predatory Function ofCyrtorhinus Lividipennis to Nilaparvata lugens Stal. LU Zhongxian,YU Xiaoping,HEONG Kongluen,HU Cui. 2008

[8]Effect of exponential fertilization on growth and nutritional status in Buddhist pine (Podocarpus macrophyllus [Thunb.] D. Don) seedlings cultured in natural and prolonged photoperiods. Wei, Hongxu,Ren, Jun,Zhou, Jianghua. 2013

[9]Exponential nutrient loading shortens the cultural period of Larix olgensis seedlings. Duan, Jie,Xu, Chengyang,Ma, Luyi,Wei, Hongxu,Jiang, Lini,Duan, Jie,Ma, Luyi,Jacobs, Douglass F.,Wei, Hongxu,Ren, Jun. 2013

[10]Expression of OsAMT1 (1.1-1.3) in rice varieties differing in nitrogen accumulation. Zhao, S. P.,Ye, X. Z.,Zhao, S. P.,Shi, W. M..

[11]Physiological and comparative proteomic analyses in response to nitrogen application in an Amaryllidaceae plant, Lycoris aurea. Ru, Qiaomei,Liu, Tingwu,Zheng, Hailei,Ru, Qiaomei,Wang, Xin.

[12]Resistance Performances of Transgenic Bt Rice Lines T-2A-1 and T1c-19 Against Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Zheng, Xusong,Yang, Yajun,Xu, Hongxing,Wang, Baoju,Lu, Zhongxian,Zheng, Xusong,Yang, Yajun,Xu, Hongxing,Wang, Baoju,Lu, Zhongxian,Chen, Hao,Lin, Yongjun,Chen, Hao,Lin, Yongjun. 2011

[13]Differentiation of a Miniature Inverted Transposable Element (MITE) system in Asian rice cultivars and its inference for a diphyletic origin of two subspecies of Asian cultivated rice. Hu, H,Mu, J,Zhang, HJ,Tao, YZ,Han, B. 2006

[14]Phosphorus Adsorption and Bioavailability in a Paddy Soil Amended with Pig Manure Compost and Decaying Rice Straw. Liang, Yongchao,Guo, Bin,Liang, Yongchao,Li, Zhaojun,Han, Fengxiang. 2009

[15]Nitrogen management to reduce yield-scaled global warming potential in rice. Liang, X. Q.,Ye, Y. S.,Ji, Y. J.,Tian, G. M.,Li, H.,Wang, S. X.,van Kessel, C.,Linquist, B. A.. 2013

[16]Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Zhang, Hua,Xu, Heng,Feng, Mengjie,Zhu, Ying. 2018

[17]Agrobacterium-mediated transformation efficiency is altered in a novel rice bacterial blight resistance cultivar and is influenced by environmental temperature. Dong, Rui-xian,Chen, Juan,Wang, Xu-ming,Li, Jin-shan,Zhou, Jie,Yang, Yong,Yu, Chu-lang,Cheng, Ye,Yan, Cheng-qi,Chen, Jian-ping,Dong, Rui-xian,Chen, Juan,Li, Jin-shan. 2012

[18]Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. Yan, Wenyi,Zeng, Longjun,Peng, Yu,Yan, Dawei,Yang, Weibing,Yang, Donglei,He, Zuhua,Yan, Wenyi,Dong, Yanjun,Yan, Wenyi,Ye, Shenghai,Jin, Qingsheng,Zhang, Xiaoming. 2010

[19]Identification and Classification of Rice Leaf Blast Based on Multi-Spectral Imaging Sensor. Lou Bing-gar,Feng Lei,Sun Guang-ming,Wu Di,He Yong,Chai Rong-yao. 2009

[20]Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Zhang, Yingying,Zhu, Yongyou,Peng, Yu,Yan, Dawei,Li, Qun,He, Zuhua,Wang, Jianjun,Wang, Linyou. 2008

作者其他论文 更多>>