文献类型: 外文期刊
作者: Feng Hai-kuan 1 ; Tao Hui-lin 1 ; Zhao Yu 1 ; Yang Fu-qin 3 ; Fan Yi-guang 1 ; Yang Gui-jun 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Minist Agr & Rural Affairs, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China
2.Nanjing Agr Univ, Natl Engn & Technol Ctr Informat Agr, Nanjing 210095, Peoples R China
3.Henan Univ Engn, Coll Civil Engn, Zhengzhou 451191, Peoples R China
关键词: Winter wheat; Chlorophyll content; Vegetation index; Red edge parameter; Partial least squares regression
期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.609; 五年影响因子:0.516 )
ISSN: 1000-0593
年卷期: 2022 年 42 卷 11 期
页码:
收录情况: SCI
摘要: Chlorophyll content (SPAD) is a vital index for crop growth evaluation, which can monitor the growth of crops and is crucial for agricultural management, so it is important to estimate SPAD quickly and accurately. In this study, the remote sensing images of the jointing, flagging, and flowering stages were acquired using UAV hyperspectral for winter wheat. The vegetation indices and red edge parameters were extracted to explore the ability of vegetation indices and red edge parameters to estimate SPAD. Firstly, the vegetation indices and red edge parameters were correlated with the SPAD of different fertility stages. Then, the SPAD was estimated based on the vegetation indices, vegetation indices combined with red edge parameters , and using partial least square regression (PLSR) method. Finally, the SPAD distribution map was produced to verify the validity of the model. The results showed that (1) most of the vegetation indices and red edge parameters were correlated with SPAD at highly significant levels (0. 01 significant) in all three major reproductive stages; (2) the SPAD estimation model constructed from individual vegetation index had the best performance for LCI among vegetation indexes (best R-2 = 0. 56 , RMSE= 2. 96, NRMSE=8. 14%) and Dr/Dr min performed best (best R-2 = 0. 49 , RMSE= 3. 18, NRMSE= 8. 76%) ; (3) SPAD estimation model based on vegetation indices combined with red edge parameters was the best and better than SPAD estimation model based on vegetation indices only. Meanwhile, both models reached the highest accuracy at the flowering stage as the fertility stage progressed, with R-2 of 0. 73 and 0. 78, RMSE of 2. 49 and 2. 22, and NRMSE of 5. 57% and 4. 95% , respectively. Therefore, based on the vegetation indices combined with the red edge parameters, using the PLSR method can improve the estimation effect of SPAD, which can provide a new method for SPAD monitoring based on UAV remote sensing, and also provide a reference for agricultural management.
- 相关文献
作者其他论文 更多>>
-
Estimation of Leaf and Canopy Scale Tea Polyphenol Content Based on Characteristic Spectral Parameters
作者:Duan Dan-dan;Liu Zhong-hua;Duan Dan-dan;Zhao Chun-jiang;Zhao Yu;Wang Fan;Zhao Chun-jiang;Zhao Yu;Wang Fan
关键词:Tea polyphenols; Hyperspectral data; Partial least squares; Random forest; Multiple linear regression
-
Estimation of Potato Plant Nitrogen Content Based on UAV Hyperspectral Imaging
作者:Fan Yi-guang;Feng Hai-kuan;Liu Yang;Long Hui-ling;Yang Gui-jun;Feng Hai-kuan;Fan Yi-guang;Feng Hai-kuan;Liu Yang;Long Hui-ling;Yang Gui-jun;Liu Yang;Fan Yi-guang;Qian Jian-guo
关键词:UAV; Potato; Hyperspectral; Image features; Plant nitrogen content
-
Estimation of Potato Above-Ground Biomass Based on VGC-AGB Model and Hyperspectral Remote Sensing
作者:Feng Hai-kuan;Zhao Chun-jiang;Feng Hai-kuan;Fan Yi-guang;Yang Gui-jun;Zhao Chun-jiang;Yue Ji-bo
关键词:VGC-AGB model; Hyperspectral remote sensing; Potato; Aboveground biomass (AGB)
-
Monitoring of Nitrogen Content in Winter Wheat Based on UAV Hyperspectral Imagery
作者:Feng Hai-kuan;Fan Yi-guang;Tao Hui-lin;Yang Gui-jun;Zhao Chun-jiang;Feng Hai-kuan;Zhao Chun-jiang;Yang Fu-qin
关键词:Unmanned aerial vehicle; Winter wheat; Hyperspectral; Nitrogen content; Stepwise regression; Spectral feature parameters
-
Estimation of Nitrogen Content in Potato Plants Based on Spectral Spatial Characteristics
作者:Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Feng Hai-kuan;Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Liu Yang;Fan Yi-guang;Qian Jian-guo
关键词:Unmanned aerial vehicle; Potato; Plantnitrogen content; Vegetation indices; High frequency information
-
Leaf Area Index Estimation Based on UAV Hyperspectral Band Selection
作者:Kong Yu-ru;Wang Li-juan;Xu Yi;Liang Liang;Xu Lu;Zhang Qing-qi;Kong Yu-ru;Feng Hai-kuan;Yang Xiao-dong
关键词:Unmanned aerial vehicle (UAV); Hyperspectral image; Band selection; Winter wheat; Leaf area index
-
Monitoring Nitrogen Nutrition and Grain Protein Content of Rice Based on Ensemble Learning
作者:Zhang Jie;Xu Bo;Feng Hai-kuan;Wang Jiao-jiao;Ming Shi-kang;Song Xiao-yu;Zhang Jie;Jing Xia;Fu You-qiang
关键词:Hyperspectral remote sensing; Rice grain protein; Machine Learning; Ensemble algorithms; Adaboost; Random forest