A novel method for online sex sorting of silkworm pupae (Bombyx mori) using computer vision combined with deep learning
文献类型: 外文期刊
作者: Guo, Feng 1 ; Qin, Wei 1 ; Fu, Xinglan 1 ; Tao, Dan 2 ; Zhao, Chunjiang 1 ; Li, Guanglin 1 ;
作者机构: 1.Southwest Univ, Coll Engn & Technol, Chongqing 400715, Peoples R China
2.East China Jiaotong Univ, Coll Elect & Automat Engn, Nanchang, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing, Peoples R China
关键词: silkworm pupae; crossbreeding; sex identification; computer vision; cascaded spatial channel attention
期刊名称:JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE ( 影响因子:3.5; 五年影响因子:4.2 )
ISSN: 0022-5142
年卷期: 2025 年 105 卷 8 期
页码:
收录情况: SCI
摘要: BACKGROUNDSilkworm pupae (SP), the pupal stage of an edible insect, have strong potential in the food, medicine, and cosmetic industries. Sex sorting is essential to enhance nutritional content and genetic traits in SP crossbreeding but it remains labor intensive and time consuming. An intelligent method is needed urgently to improve efficiency and productivity.RESULTSTo address the problem, an automatic SP sex-separation system was developed based on computer vision and deep learning. Specifically, based on gonad features, a novel real-time SP sex identification model with cascaded spatial channel attention (CSCA) and G-GhostNet (GPU-Ghost Network) was developed, which can capture regions of interest and achieve feature diversity efficiently. A new loss function was proposed to reduce model complexity and avoid overfitting in the training. In comparison with benchmark methods on the test set, the new model achieved superior performance with an accuracy of 96.48%. The experimental sorting accuracy for SP reached 95.59%, validating the effectiveness of the novel gender-separation strategy.CONCLUSIONThis research presents a practical method for online SP gender separation, potentially aiding the production of high-quality SP. (c) 2025 Society of Chemical Industry.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Rapid and highly sensitive detection of trace chromium and copper in tea infusion using laser-induced breakdown spectroscopy combined with electrospinning technology
作者:He, Panyu;Fu, Xinglan;Wang, Chenghao;Gou, Yujiang;An, Ting;Li, Guanglin;Cao, Fengjing;Tian, Hongwu;Ma, Shixiang;Liang, Yiyi
关键词:Laser-induced breakdown spectroscopy (LIBS); Electrospinning (ES); Tea infusion; Nanoparticles(NPs); Electrospun nanofiber membranes (ENM); Heavy metals detection
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding



