Principles and applications of convolutional neural network for spectral analysis in food quality evaluation: A review
文献类型: 外文期刊
作者: Luo, Na 1 ; Xu, Daming 1 ; Xing, Bin 1 ; Yang, Xinting 1 ; Sun, Chuanheng 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing, Peoples R China
3.Natl Engn Lab Agriprod Qual Traceabil, Beijing, Peoples R China
4.Beijing Acad Agr & Forestry Sci, 9 Shuguang huayuan Middle Rd, Beijing 100097, Peoples R China
关键词: Convolutional neural network; Spectroscopic technologies; Evaluation; Food quality
期刊名称:JOURNAL OF FOOD COMPOSITION AND ANALYSIS ( 影响因子:4.3; 五年影响因子:4.6 )
ISSN: 0889-1575
年卷期: 2024 年 128 卷
页码:
收录情况: SCI
摘要: The spectroscopic technologies have been successfully applied to food quality evaluation owing to their abilities of wavelengths being sensitive to biological components of food, and they also have advantages of nondestructive, rapid, convenient. For the food quality evaluation, it's a critical step to build mapping relationships between the spectral data and the specific food quality targets. Convolutional neural network (CNN), as a data-driven deep learning method, provides an end-to-end modeling approach to build mapping without spectral preprocessing techniques, which reduce the need from prior knowledge and human efforts. Meanwhile, in terms of model accuracy, robustness and generalization, CNN also have exhibited superior performances in the recent studies. In this review, we provide a brief overview of the CNN technique firstly, and then systematically analyze existing studies on CNN techniques for spectral analysis into three categories, including end-to-end modeling, spectral dimension reduction and interoperability. Meanwhile, we review the latest applications of CNN techniques for both qualitative and quantitative evaluation of food quality. Then, based on the large number of CNN models in the existing studies, we provide some guidelines for new users to develop a CNN model in their data analysis process, including the design of network structure, tuning the hyperparameters and training strategies. Finally, the advantages, limitations and future perspectives for food quality evaluation by spectral analysis and CNN approaches are also discussed in the study.
- 相关文献
作者其他论文 更多>>
-
Early diagnosis of greenhouse cucumber downy mildew in seedling stage using chlorophyll fluorescence imaging technology
作者:Chen, Xiaohui;Shi, Dongyuan;Yang, Xinting;Li, Ming;Chen, Xiaohui;Li, Ming;Shi, Dongyuan;Li, Ming;Zhang, Hengwei;Sanchezerez, Jose Antonio
关键词:Pseudoperonospora cubensis; Chlorophyll fluorescence imaging; Bayesian estimation; Feature selection; CNN; Early detection
-
CFFI-Vit: Enhanced Vision Transformer for the Accurate Classification of Fish Feeding Intensity in Aquaculture
作者:Liu, Jintao;Becerra, Alfredo Tolon;Bienvenido-Barcena, Jose Fernando;Liu, Jintao;Yang, Xinting;Zhao, Zhenxi;Zhou, Chao;Liu, Jintao;Yang, Xinting;Zhao, Zhenxi;Zhou, Chao;Liu, Jintao;Yang, Xinting;Zhao, Zhenxi;Zhou, Chao
关键词:aquaculture; fish feeding intensity classification; vision transformer; residual network
-
Preparation of waterborne anti-counterfeiting ink based on dual luminescent nanohybrids of bacterial cellulose nanocrystals and lanthanide-nitrogen co-modified GQDs
作者:Jia, Zhixin;Yang, Xinting;Sun, Xia;Guo, Yemin;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Zhang, Jingbin
关键词:Bacterial cellulose nanocrystal; Graphene quantum dots; Nanohybrids; Dual anti-counterfeiting; Waterborne fluorescent ink
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Porphyrin fluorescence imaging for real-time monitoring and visualization of the freshness of beef stored at different temperatures
作者:Liu, Huan;Zhu, Lei;Ji, Zengtao;Zhang, Min;Yang, Xinting;Liu, Huan;Zhu, Lei;Ji, Zengtao;Yang, Xinting;Zhang, Min;Liu, Huan;Ji, Zengtao;Yang, Xinting;Liu, Huan;Ji, Zengtao;Yang, Xinting
关键词:Porphyrin; Fluorescence imaging; Beef; Freshness; Visualization
-
FCFormer: fish density estimation and counting in recirculating aquaculture system
作者:Zhu, Kaijie;Ma, Pingchuan;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen
关键词:recirculating aquaculture systems; density estimation; fish counting; transformer; deep learning
-
Synchronous fluorescence detection of nitrite in meat products based on dual-emitting dye@MOF and its portable hydrogel test kit
作者:Deng, Siyang;Liu, Junmei;Han, Dong;Zhang, Chunhui;Yang, Xinting;Liu, Huan;Yang, Xinting;Liu, Huan;Deng, Siyang;Liu, Junmei;Blecker, Christophe
关键词:Luminescent metal organic framework; Dual-mode detection; On-spot visualization; NO2-; Rh6G@UIO-66-NH2