Online soluble solids content (SSC) assessment of multi-variety tomatoes using Vis/NIRS diffuse transmission
文献类型: 外文期刊
作者: Yang, Yi 1 ; Huang, Wenqian 1 ; Zhao, Chunjiang 1 ; Tian, Xi 1 ; Fan, Shuxiang 1 ; Wang, Qingyan 1 ; Li, Jiangbo 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Res Ctr Intelligent Equipment, Beijing 100097, Peoples R China; Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing 100097, Peoples R China; Natl Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
关键词: Multi-variety; Tomato; Soluble solids content; Online detection; Fruit orientation
期刊名称:INFRARED PHYSICS & TECHNOLOGY ( 影响因子:2.997; 五年影响因子:2.962 )
ISSN: 1350-4495
年卷期: 2022 年 125 卷
页码:
收录情况: SCI
摘要: This study investigates the potential of the online diffuse transmission Vis/NIRS technology for quantitative soluble solids content (SSC) assessment of multi-variety tomatoes. For every single-variety tomato, the stem -calyx axis horizontal with stem towards (T1 orientation) is verified to be the best detection orientation with the simpler propagation light path or shorter light path distance. Compared to the full wavelength after Savitzky-Golay smoothing (SGS) pretreatment, the partial least squares regression (PLSR) model performance can be further improved by the selected Competitive Adaptive Reweighted Sampling (CARS) key wavelengths. The best CARS-PLSR model performances are Tianci-595 (Rp = 0.85, RMSEp = 0.21), Xianke-No.8 (Rp = 0.87, RMSEp = 0.20), and Yuanwei-No.1 (Rp = 0.87, RMSEp = 0.35), respectively. For multi-variety tomatoes, it is difficult to find a universal SSC prediction method regardless of mutual prediction between different models or mixed models of different tomato varieties. Our results in the present study reveal the potential for online diffuse transmission Vis/NIRS technology as a valuable method for tomato SSC assessment. The potential of key wavelengths in multi-variety tomatoes' universal SSC prediction requires further experimental verification and optimization.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Combining dual-wavelength laser-induced fluorescence hyperspectral imaging with mutual information decomposition and redundancy elimination method to detect Aflatoxin B1 of individual maize kernels
作者:Fan, Yaoyao;Kang, Jian;Chen, Liping;Fan, Yaoyao;Yao, Xueying;Wang, Zheli;Long, Yuan;Chen, Liping;Huang, Wenqian;Tian, Xi;Tian, Xi
关键词:Dual-wavelength; Fluorescence hyperspectral imaging; Mutual information; Information decomposition; Maize kernels; Aflatoxin B1
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding



