Comparison of Orchard Target-Oriented Spraying Systems Using Photoelectric or Ultrasonic Sensors
文献类型: 外文期刊
作者: Dou, Hanjie 1 ; Zhai, Changyuan 2 ; Chen, Liping 1 ; Wang, Xiu 2 ; Zou, Wei 2 ;
作者机构: 1.Northwest A&F Univ, Coll Mech & Elect Engn, Yangling 712100, Shaanxi, Peoples R China
2.Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
关键词: orchard spraying; target-oriented sprayer; photoelectric sensor; ultrasonic sensors; off-target deposition
期刊名称:AGRICULTURE-BASEL ( 影响因子:2.925; 五年影响因子:3.044 )
ISSN:
年卷期: 2021 年 11 卷 8 期
页码:
收录情况: SCI
摘要: Orchard pesticide off-target deposition and drift cause substantial soil and water pollution, and other environmental pollution. Orchard target-oriented spraying technologies have been used to reduce the deposition and drift caused by off-target spraying and control environmental pollution to within an acceptable range. Two target-oriented spraying systems based on photoelectric sensors or ultrasonic sensors were developed. Three spraying treatments of young cherry trees and adult apple trees were conducted using a commercial sprayer with a photoelectric-based target-oriented spraying system, an ultrasonic-based target-oriented spraying system or no target-oriented spraying system. A rhodamine tracer was used instead of pesticide. Filter papers were fixed in the trees and on the ground. The tracer on the filter papers was washed off to calculate the deposition distribution in the trees and on the ground. The deposition data were used to evaluate the systems and pesticide off-target deposition achieved with orchard target-oriented sprayers. The results showed that the two target-oriented spraying systems greatly reduced the ground deposition compared to that caused by off-target spraying. Compared with that from off-target spraying, the ground deposition from photoelectric-based (trunk-based) and ultrasonic-based (canopy-based) target-oriented spraying decreased by 50.63% and 38.74%, respectively, for the young fruit trees and by 21.66% and 29.87%, respectively, for the adult fruit trees. The trunk-based target-oriented detection method can be considered more suitable for young trees, whereas the canopy-based target-oriented detection method can be considered more suitable for adult trees. The maximum ground deposition occurred 1.5 m from the tree trunk at the back of the tree canopy and was caused by the high airflow at the air outlet of the sprayer. A suitable air speed and air volume at the air outlet of the sprayer can reduce pesticide deposition on the ground.
- 相关文献
作者其他论文 更多>>
-
Deposition Characteristics of Air-Assisted Sprayer Based on Canopy Volume and Leaf Area of Orchard Trees
作者:Gu, Chenchen;Sun, Jiahui;Li, Si;Yang, Shuo;Zhai, Changyuan;Gu, Chenchen;Li, Si;Yang, Shuo;Zou, Wei
关键词:canopy volume; leaf area; air-assisted spraying; precision application; deposition characteristics
-
Improving UASS pesticide application: optimizing and validating drift and deposition simulations
作者:Tang, Qing;Zhang, Ruirui;Chen, Liping;Zhang, Pan;Li, Longlong;Xu, Gang;Yi, Tongchuan;Tang, Qing;Zhang, Ruirui;Chen, Liping;Zhang, Pan;Li, Longlong;Xu, Gang;Yi, Tongchuan;Hewitt, Andrew
关键词:lattice Boltzmann method (LBM); unmanned aerial spraying systems (UASS); Pest management; pesticide drift and deposition; optimization
-
Hyperspectral transmittance imaging detection of early decayed oranges caused by Penicillium digitatum using NFINDR-JMSAM algorithm with spectral feature separating
作者:Cai, Letian;Chen, Liping;Li, Xuetong;Zhang, Yizhi;Shi, Ruiyao;Li, Jiangbo;Cai, Letian
关键词:Citrus; Decay detection; Hyperspectral transmittance imaging; NFINDR-JMSAM; Spectral separation
-
Construction of a stable YOLOv8 classification model for apple bruising detection based on physicochemical property analysis and structured-illumination reflectance imaging
作者:Zhang, Junyi;Chen, Liping;Cai, Zhonglei;Shi, Ruiyao;Cai, Letian;Li, Jiangbo;Zhang, Junyi;Luo, Liwei;Yang, Xuhai;Li, Jiangbo
关键词:Apple; Bruising detection; Physicochemical property analysis; Structured-illumination reflectance imaging; Deep learning model
-
YOLO-detassel: Efficient object detection for Omitted Pre-Tassel in detasseling operation for maize seed production
作者:Yang, Jiaxuan;Zhang, Ruirui;Ding, Chenchen;Chen, Liping;Xie, Yuxin;Ou, Hong;Yang, Jiaxuan;Zhang, Ruirui;Ding, Chenchen;Chen, Liping;Xie, Yuxin;Ou, Hong;Yang, Jiaxuan;Chen, Liping
关键词:Detasseling; Object detection; UAV; Deep learning; Maize hybrid seed production
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Combining dual-wavelength laser-induced fluorescence hyperspectral imaging with mutual information decomposition and redundancy elimination method to detect Aflatoxin B1 of individual maize kernels
作者:Fan, Yaoyao;Kang, Jian;Chen, Liping;Fan, Yaoyao;Yao, Xueying;Wang, Zheli;Long, Yuan;Chen, Liping;Huang, Wenqian;Tian, Xi;Tian, Xi
关键词:Dual-wavelength; Fluorescence hyperspectral imaging; Mutual information; Information decomposition; Maize kernels; Aflatoxin B1



