Comparison of Orchard Target-Oriented Spraying Systems Using Photoelectric or Ultrasonic Sensors
文献类型: 外文期刊
作者: Dou, Hanjie 1 ; Zhai, Changyuan 2 ; Chen, Liping 1 ; Wang, Xiu 2 ; Zou, Wei 2 ;
作者机构: 1.Northwest A&F Univ, Coll Mech & Elect Engn, Yangling 712100, Shaanxi, Peoples R China
2.Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
关键词: orchard spraying; target-oriented sprayer; photoelectric sensor; ultrasonic sensors; off-target deposition
期刊名称:AGRICULTURE-BASEL ( 影响因子:2.925; 五年影响因子:3.044 )
ISSN:
年卷期: 2021 年 11 卷 8 期
页码:
收录情况: SCI
摘要: Orchard pesticide off-target deposition and drift cause substantial soil and water pollution, and other environmental pollution. Orchard target-oriented spraying technologies have been used to reduce the deposition and drift caused by off-target spraying and control environmental pollution to within an acceptable range. Two target-oriented spraying systems based on photoelectric sensors or ultrasonic sensors were developed. Three spraying treatments of young cherry trees and adult apple trees were conducted using a commercial sprayer with a photoelectric-based target-oriented spraying system, an ultrasonic-based target-oriented spraying system or no target-oriented spraying system. A rhodamine tracer was used instead of pesticide. Filter papers were fixed in the trees and on the ground. The tracer on the filter papers was washed off to calculate the deposition distribution in the trees and on the ground. The deposition data were used to evaluate the systems and pesticide off-target deposition achieved with orchard target-oriented sprayers. The results showed that the two target-oriented spraying systems greatly reduced the ground deposition compared to that caused by off-target spraying. Compared with that from off-target spraying, the ground deposition from photoelectric-based (trunk-based) and ultrasonic-based (canopy-based) target-oriented spraying decreased by 50.63% and 38.74%, respectively, for the young fruit trees and by 21.66% and 29.87%, respectively, for the adult fruit trees. The trunk-based target-oriented detection method can be considered more suitable for young trees, whereas the canopy-based target-oriented detection method can be considered more suitable for adult trees. The maximum ground deposition occurred 1.5 m from the tree trunk at the back of the tree canopy and was caused by the high airflow at the air outlet of the sprayer. A suitable air speed and air volume at the air outlet of the sprayer can reduce pesticide deposition on the ground.
- 相关文献
作者其他论文 更多>>
-
Model for Detecting Boom Height Based on an Ultrasonic Sensor for the Whole Growth Cycle of Wheat
作者:Wu, Jianguo;Li, Chengqian;Pan, Xiaoyong;Wang, Xiu;Zhao, Xueguan;Zhai, Changyuan;Wu, Jianguo;Yang, Shuo;Wu, Jianguo;Zhai, Changyuan;Li, Chengqian;Pan, Xiaoyong;Wang, Xiu;Zhao, Xueguan;Yang, Shuo;Zhai, Changyuan;Gao, Yuanyuan
关键词:ultrasonic waves; crop canopy top detection; spray boom height; detection model; precision agriculture
-
Optimized Design of Robotic Arm for Tomato Branch Pruning in Greenhouses
作者:Ma, Yuhang;Chen, Liping;Feng, Qingchun;Sun, Yuhuan;Guo, Xin;Zhang, Wanhao;Wang, Bowen;Chen, Liping;Feng, Qingchun;Guo, Xin;Chen, Liping
关键词:agricultural robot; tomato pruning; manipulator; structural optimization
-
Review of the detasseling techniques for maize ( Zea mays L.) hybrid seed production
作者:Zhang, Ruirui;Yang, Jiaxuan;Chen, Liping;Ding, Chenchen;Li, Longlong;Zhang, Linhuan;Zhang, Ruirui;Yang, Jiaxuan;Chen, Liping;Ding, Chenchen;Li, Longlong;Zhang, Linhuan;Zhang, Ruirui;Yang, Jiaxuan;Chen, Liping;Ding, Chenchen;Li, Longlong;Zhang, Linhuan
关键词:detasseling technique; detasseling machine; UAVs; intelligent agriculture; maize hybrid seed production
-
Effect of Polymer Adjuvant Type and Concentration on Atomization Characteristics of Nozzle
作者:Hu, Peng;Zhang, Ruirui;Yang, Jiajun;Chen, Liping;Li, Longlong;Tang, Qing;Yan, Wenlong;Yang, Jiajun
关键词:polymer adjuvant; atomization; nozzle; PDI
-
Detection of Insect-Damaged Maize Seed Using Hyperspectral Imaging and Hybrid 1D-CNN-BiLSTM Model
作者:Wang, Zheli;Chen, Liping;Wang, Zheli;Fan, Shuxiang;An, Ting;Zhang, Chi;Chen, Liping;Huang, Wenqian
关键词:Maize seed; Insect infestation; Hyperspectral imaging; Deep learning; BiLSTM
-
YOLOv5s-CEDB: A robust and efficiency Camellia oleifera fruit detection algorithm in complex natural scenes
作者:Zhu, Aobin;Chen, Liping;Zhu, Aobin;Zhang, Ruirui;Zhang, Linhuan;Yi, Tongchuan;Wang, Liwan;Zhang, Danzhu;Chen, Liping;Zhu, Aobin;Zhang, Ruirui;Zhang, Linhuan;Yi, Tongchuan;Wang, Liwan;Zhang, Danzhu;Chen, Liping;Zhu, Aobin;Zhang, Ruirui;Zhang, Linhuan;Yi, Tongchuan;Wang, Liwan;Zhang, Danzhu;Chen, Liping;Zhu, Aobin;Zhang, Ruirui;Zhang, Linhuan;Yi, Tongchuan;Wang, Liwan;Zhang, Danzhu;Chen, Liping
关键词:Camellia oleifera fruit; Natural scenes; Object detection; YOLOv5s
-
A novel framework to assess apple leaf nitrogen content: Fusion of hyperspectral reflectance and phenology information through deep learning
作者:Chen, Riqiang;Liu, Wenping;Zhou, Yan;Zhang, Chengjian;Chen, Riqiang;Yang, Guijun;Zhang, Chengjian;Han, Shaoyu;Meng, Yang;Feng, Haikuan;Chen, Riqiang;Liu, Wenping;Zhou, Yan;Yang, Hao;Jin, Xiuliang;Meng, Yang;Feng, Haikuan;Zhai, Changyuan;Han, Shaoyu
关键词:Apple; Leaf Nitrogen Content (LNC); Phenology; DNN; Data -Processing



