文献类型: 外文期刊
作者: Wang, Yuhan 1 ; Zhang, Qian 2 ; Yu, Feng 2 ; Zhang, Na 1 ; Zhang, Xining 2 ; Li, Yuchen 1 ; Wang, Ming 2 ; Zhang, Jinmeng 2 ;
作者机构: 1.Beijing Agr Univ, Coll Intelligent Sci & Engn, Beijing 102206, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Inst Data Sci & Agr Econ, Beijing 102206, Peoples R China
3.Beijing Rural Remote Informat Serv Engn Technol Re, Beijing 102206, Peoples R China
关键词: deep learning; prediction model; crop yield prediction
期刊名称:AGRONOMY-BASEL ( 影响因子:3.4; 五年影响因子:3.8 )
ISSN:
年卷期: 2024 年 14 卷 10 期
页码:
收录情况: SCI
摘要: In recent years, crop yield prediction has become a research hotspot in the field of agricultural science, playing a decisive role in the economic development of every country. Therefore, accurate and timely prediction of crop yields is of great significance for the national formulation of relevant economic policies and provides a reasonable basis for agricultural decision-making. The results obtained through prediction can selectively observe the impact of factors such as crop growth cycles, soil changes, and rainfall distribution on crop yields, which is crucial for predicting crop yields. Although traditional machine learning methods can obtain an estimated crop yield value and to some extent reflect the current growth status of crops, their prediction accuracy is relatively low, with significant deviations from actual yields, and they fail to achieve satisfactory results. To address these issues, after in-depth research on the development and current status of crop yield prediction, and a comparative analysis of the advantages and problems of domestic and foreign yield prediction algorithms, this paper summarizes the methods of crop yield prediction based on deep learning. This includes analyzing and summarizing existing major prediction models, analyzing prediction methods for different crops, and finally providing relevant views and suggestions on the future development direction of applying deep learning to crop yield prediction research.
- 相关文献
作者其他论文 更多>>
-
Rapid introgression of the clubroot resistance gene CRa into cabbage skeleton inbred lines through marker assisted selection
作者:Zhang, Na;Zhu, Mingzhao;Qiu, Yuting;Fang, Zhiyuan;Zhuang, Mu;Zhang, Yangyong;Lv, Honghao;Ji, Jialei;Yang, Limei;Wang, Yong;Zhu, Mingzhao;Hou, Xilin
关键词:Clubroot; Breeding; Backcross; Marker assisted selection
-
Light signal regulates endoreduplication and tomato fruit expansion through the SlPIF1a-SlTLFP8-SlCDKB2 module
作者:Zhang, Jiaojiao;Xu, Jiayi;Wang, Xinman;Liu, Ying;Li, Shuangtao;Zhang, Jialong;He, Lingfeng;Guo, Luqin;Li, Chonghua;Guo, Yang - Dong;Zhang, Na;Zhang, Jiaojiao;Wang, Xinman;Li, Shuangtao;Guo, Luqin;Li, Xin - Xu
关键词:cyclin- dependent kinase; box tubby- like protein; fruit size; |phytochrome- interacting FACTOR; ubiquitination
-
New insights on canopy heterogeneous analysis and light micro-climate simulation in Chinese solar greenhouse
作者:Xu, Demin;Chen, Haochong;Ji, Fang;Zhu, Jinyu;Wang, Zhi;Zhang, Ruihang;Hou, Maolin;Huang, Xin;Wang, Dongyu;Ma, Yuntao;Zhu, Jinyu;Lu, Tiangang;Zhang, Jian;Yu, Feng
关键词:Cucumber; LiDAR; Plant phenotype; 3D light interception; Modelling; Solar greenhouse
-
EasyMetagenome: A user-friendly and flexible pipeline for shotgun metagenomic analysis in microbiome research
作者:Bai, Defeng;Xun, Jiani;Ma, Chuang;Luo, Hao;Yang, Haifei;Hou, Huiyu;Lv, Hujie;Wan, Xiulin;Wang, Yao;Yousuf, Salsabeel;Zeng, Meiyin;Zhang, Tianyuan;Gao, Yunyun;Liu, Yong-Xin;Chen, Tong;Ma, Chuang;Yang, Haifei;Cao, Chen;Cao, Xiaofeng;Cui, Jianzhou;Deng, Yuan-Ping;Deng, Zhaochao;Yu, Hao;Zhang, Chunfang;Dong, Wenxin;Dong, Wenxue;Du, Juan;Fang, Qunkai;Fang, Wei;Fang, Yue;Luan, Yaning;Fu, Fangtian;Fu, Min;Fu, Yi-Tian;Gao, He;Ge, Jingping;Guo, Yuhao;Gong, Qinglong;Lou, Wenbo;Gu, Lunda;Yang, Li;Guo, Peng;Hai, Tang;Liu, Hao;He, Jieqiang;He, Zi-Yang;Huang, Can;Ji, Shuai;Jiang, ChangHai;Jiang, Gui-Lai;Jiang, Lingjuan;Jin, Ling N.;Li, Changchao;Kan, Yuhe;Kang, Da;Kou, Jin;Lam, Ka-Lung;Li, Chong;Li, Fuyi;Li, Liwei;Li, Miao;Li, Xin;Li, Ye;Li, Zheng-Tao;Zhu, Chengshuai;Liang, Jing;Mo, Jiayuan;Lin, Yongxin;Liu, Changzhen;Liu, Danni;Zhang, Jing;Chen, Shifu;Liu, Fengqin;Liu, Jia;Liu, Tianrui;Liu, Tingting;Wang, Xinlong;Liu, Xinyuan;Luo, Yuanyuan;Liu, Yaqun;Liu, Bangyan;Liu, Minghao;Lv, Hujie;Ma, Tengfei;Mai, Zongjiong;Niu, Dongze;Pan, Zhuo;Qi, Heyuan;Shi, Zhanyao;Song, Chunjiao;Sun, Fuxiang;Sun, Yan;Tian, Sihui;Wang, Guoliang;Wang, Hongyang;Wang, Hongyu;Wang, Huanhuan;Wang, Jing;Wang, Jun;Wang, Kang;Wang, Leli;Yao, Xiaofang;Wang, Shao-kun;Xiao, Zufei;Xing, Huichun;Xu, Yifan;Yang, Song;Yan, Shu-yan;Zhang, Yi-Bo;Yang, Yuanming;Lei, Yu;Yuan, Zhengrong;Zhang, Chunge;Zhang, Huimin;Zhang, Na;Zhang, Yupeng;Zhang, Zheng;Zhou, Mingda;Zhou, Yuanping;Zhu, Zhihao;Zhu, Lin;Zhu, Yue;Zou, Hongqin;Zuo, Anna;Dong, Wenxuan;Wen, Tao;Chen, Shifu;Chen, Shifu;Li, Guoliang
关键词:metagenome; microbiome; microbiota; pipeline; visualization
-
Faster growth rate induces higher ecosystem productivity in Inner Mongolian grasslands during 2000-2018 years
作者:Nie, Zexu;Zhang, Na;Nie, Zexu;Wang, Chao;Zhang, Na
关键词:Vegetation phenology; Environmental factor; Relative contribution; Drylands
-
Achieving optimal cutting results for melon rootstock: Precision linear cutting and parameter simulation optimization
作者:Chen, Shan;Feng, Qingchun;Li, Tao;Jiang, Kai;Zhao, Chunjiang;Chen, Shan;Feng, Qingchun;Kan, Za;Meng, Hewei;Zhao, Chunjiang;Zhang, Qian;Jia, Zhiwei;Zhao, Chunjiang;Li, Tao;Jiang, Kai
关键词:Grafting robot; Rootstock cutting; EDEM; Cutting model; Response surface test; Parameter optimization
-
A Review of Research on Fruit and Vegetable Picking Robots Based on Deep Learning
作者:Tan, Yarong;Liu, Xin;Zhang, Jinmeng;Wang, Yigang;Hu, Yanxiang
关键词:deep learning; fruit and vegetable picking robots; goal detection; perception; decision making and control



