Estimation of winter wheat grain crude protein content from in situ reflectance and advanced spaceborne thermal emission and reflection radiometer image
文献类型: 外文期刊
作者: Huang, Wenjiang 1 ; Song, Xiaoyu 1 ; Lamb, David W. 4 ; Wang, Zhijie 1 ; Niu, Zheng 2 ; Liu, Liangyun 1 ; Wang, Jihua 1 ;
作者机构: 1.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
2.Chinese Acad Sci, State Key Lab Remote Sensing Sci, Jointly Sponsored Inst Remote Sensing Applicat, Beijing 100101, Peoples R China
3.Beijing Normal Univ, Beijing 100101, Peoples R China
4.Univ New England, Sch Sci & Technol, Precis Agr Res Grp, Armidale, NSW 2351, Australia
5.Agr & Agri Food Canada, St Jean, PQ J3B 3E6, Canada
关键词: winter wheat (Triticum aestivum L); canopy reflectance; nitrogen reflectance index (NRI); grain crude protein content; ASTER image
期刊名称:JOURNAL OF APPLIED REMOTE SENSING ( 影响因子:1.53; 五年影响因子:1.565 )
ISSN: 1931-3195
年卷期: 2008 年 2 卷
页码:
收录情况: SCI
摘要: The advanced technology in site-specific and spaceborne determination of grain crude protein content (CP) by remote sensing can help optimize the strategies for buyers in aiding purchasing decisions, and help farmers to maximize the grain output by adjusting field nitrogen (N) fertilizer inputs. We performed field experiments to study the relationship between grain quality indicators and foliar nitrogen concentration (FNC). FNC at anthesis stage was significantly correlated with CP, while spectral vegetation index was significantly correlated to FNC. Based on the relationships among nitrogen reflectance index (NRI), FNC and CP, a model for CP prediction was developed. NRI was able to evaluate FNC with a higher coefficient of determination of R-2=0.7302 in Experiment A. The relationship between laboratory measured and remotely sensed FNC had a coefficient of determination of R-2=0.7279 in Experiment B. The method developed in this study could contribute towards developing optimal procedures for evaluating wheat grain quality by in situ canopy-reflected spectrum and ASTER image at anthesis stage. CP derived from both in situ spectrum and the ASTER image exhibited high accuracy and the precision in Experiment C. The RMSE were 0.893 % for in situ spectrum model and 1.654 % for ASTER image model, and the R-2 were 0.7661 and 0.7194 for both, respectively. It is thus feasible to forecast grain quality by NRI derived from in situ canopy-reflected spectrum and ASTER image. Our results indicated that the inversion of FNC and the evaluation of CP by NRI were surprisingly good.
- 相关文献
作者其他论文 更多>>
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
The giant genome of lily provides insights into the hybridization of cultivated lilies
作者:Liang, Yuwei;Gao, Qiang;Zhang, Liangsheng;Li, Fan;Duan, Qing;Li, Shenchong;Jin, Chunlian;Zhang, Peihua;Wang, Jihua;Li, Fan;Duan, Qing;Li, Shenchong;Jin, Chunlian;Zhang, Peihua;Wang, Jihua;Du, Yunpeng;Pan, Wenqiang;Zhang, Xiuhai;Zhang, Mingfang;Wu, Jian;Pan, Wenqiang;Wang, Shaokun;Song, Xiaoming;Zhong, Linlin;Zhang, Fan;Li, Yan;Wang, Zhiwei;Li, Danqing;Gu, Yang;Chen, Zhong-Hua;Chen, Zhong-Hua;Mayer, Klaus F. X.;Mayer, Klaus F. X.;Zhou, Xiaofan;Zhang, Liangsheng;Zhang, Liangsheng
关键词:
-
Multi-Spectral Point Cloud Constructed with Advanced UAV Technique for Anisotropic Reflectance Analysis of Maize Leaves
作者:Bi, Kaiyi;Niu, Yifang;Niu, Zheng;Hao, Yishuo;Wang, Li;Yang, Hao;Hao, Yishuo
关键词:multi-spectral point cloud; UAV; oblique photography; reflectance anisotropy; Maize
-
Inversion of biophysical parameters of potato based on an active learning pool-based sampling strategy
作者:Ma, Yuanyuan;Song, Xiaoyu;Pan, Di;Feng, Haikuan;Yang, Guijun;Sun, Heguang;Zheng, Chunkai;Li, Pingping;Qiu, Chunxia;Zhang, Jie;Ma, Yuanyuan
关键词:PROSAIL radiative transfer model; look-up table (LUT); active learning; hybrid methods; Euclidean distance-based diversity (EBD) algorithm
-
Multi-variety monitoring of potato late blight severity using UAV data with improved SMOTE-CS for small sample modeling and deep feature learning
作者:Sun, Heguang;Mai, Huanming;Deng, Xiaoling;Feng, Ziheng;Feng, Haikuan;Yang, Guijun;Song, XiaoYu;Mao, Yanzhi;Li, Qingquan;Guo, Mei;Guo, Wei
关键词:Potato late blight; Remote sensing; SMOTE-CS; Deep learning; Transfer learning
-
Dynamic UAV data fusion and deep learning for improved maize phenological-stage tracking
作者:Feng, Ziheng;Zhao, Jiliang;Suo, Liunan;Feng, Ziheng;Sun, Heguang;Long, Huiling;Yang, Hao;Song, Xiaoyu;Feng, Haikuan;Xu, Bo;Yang, Guijun;Zhao, Chunjiang
关键词:Near real-time; Maize phenology; Deep learning; UAV; Multi-source data fusion
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal



