文献类型: 外文期刊
作者: Zhao Chun-jiang 1 ; Huang Wen-jiang 1 ; Mu Xu-han 2 ; Wang Jin-di 2 ; Wang Ji-hua 1 ;
作者机构: 1.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
2.Beijing Normal Univ, Sch Geog, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
关键词: Bidirectional reflectance distribution function (BRDF); Crop geometry; Sensitivity Analysis; Average leaf angle (ALA)
期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )
ISSN: 1000-0593
年卷期: 2009 年 29 卷 9 期
页码:
收录情况: SCI
摘要: With the rapid development of remote sensing technology, the application of remote sensing has extended from single view angle to multi-view angles. It was studied for the qualitative and quantitative effect of average leaf angle (ALA) on crop canopy reflected spectrum. Effect of ALA on canopy reflected spectrum can not be ignored with inversion of leaf area index (LAI) and monitoring of crop growth condition by remote sensing technology. Investigations of the effect of erective and horizontal varieties were conducted by bidirectional canopy reflected spectrum and semiempirical bidirectional reflectance distribution function (BRDF) models. The sensitive analysis was done based on the weight for the volumetric kernel (f(vol)), the weight for the geometric kernel (f(geo)), and the weight for constant corresponding to isotropic reflectance (f(iso)) at red band (680 nm) and near infrared band (800 nm). By combining the weights of the red and near-infrared bands, the semiempirical models can obtain structural information by retrieving biophysical parameters from the physical BRDF model and a number of bidirectional observations. So, it will allow an on-site and non-sampling mode of crop ALA identification, which is useful for using remote sensing for crop growth monitoring and for improving the LAI inversion accuracy, and it will help the farmers in guiding the fertilizer and irrigation management in the farmland without a priori knowledge.
- 相关文献
作者其他论文 更多>>
-
Estimation of Leaf and Canopy Scale Tea Polyphenol Content Based on Characteristic Spectral Parameters
作者:Duan Dan-dan;Liu Zhong-hua;Duan Dan-dan;Zhao Chun-jiang;Zhao Yu;Wang Fan;Zhao Chun-jiang;Zhao Yu;Wang Fan
关键词:Tea polyphenols; Hyperspectral data; Partial least squares; Random forest; Multiple linear regression
-
Research on the Classification of Yingde Tea Plantations Based on Time Series Sentinel-2 Images
作者:Chen Pan-pan;Ren Yan-min;Zhao Chun-jiang;Li Cun-jun;Liu Yu
关键词:Tea plantation; Sentinel-2; Temporal features; Machine learning; Classification
-
Estimation of Potato Above-Ground Biomass Based on VGC-AGB Model and Hyperspectral Remote Sensing
作者:Feng Hai-kuan;Zhao Chun-jiang;Feng Hai-kuan;Fan Yi-guang;Yang Gui-jun;Zhao Chun-jiang;Yue Ji-bo
关键词:VGC-AGB model; Hyperspectral remote sensing; Potato; Aboveground biomass (AGB)
-
Monitoring of Nitrogen Content in Winter Wheat Based on UAV Hyperspectral Imagery
作者:Feng Hai-kuan;Fan Yi-guang;Tao Hui-lin;Yang Gui-jun;Zhao Chun-jiang;Feng Hai-kuan;Zhao Chun-jiang;Yang Fu-qin
关键词:Unmanned aerial vehicle; Winter wheat; Hyperspectral; Nitrogen content; Stepwise regression; Spectral feature parameters
-
Detecting Green Plants Based on Fluorescence Spectroscopy
作者:Wang Ai-chen;Gao Bin-jie;Zhao Chun-jiang;Wang Miao-lin;Yan Shu-gang;Li Lin;Wei Xin-hua;Zhao Chun-jiang;Xu Yi-fei;Wang Ai-chen;Xu Yi-fei
关键词:Fluorescence spectroscopy; Green plant; Target detection; Precision agriculture; Site-specific spraying
-
Study on the Predication Modeling of COD for Water Based on UV-VIS Spectroscopy and CNN Algorithm of Deep Learning
作者:Jia Wen-shen;Liang Gang;Wang Ji-hua;Jia Wen-shen;Zhang Heng-zhi;Ma Jie;Liu Xin;Jia Wen-shen;Liang Gang;Wang Ji-hua;Jia Wen-shen;Liang Gang;Wang Ji-hua
关键词:Ultraviolet visible spectrum; Convolution neural network; Chemical oxygen demand; Prediction model
-
Global sensitivity analysis of wheat grain yield and quality and the related process variables from the DSSAT-CERES model based on the extended Fourier Amplitude Sensitivity Test method
作者:Li Zhen-hai;Li Zhen-hai;Xu Xin-gang;Jin Xiu-liang;Liu Hai-long;Wang Ji-hua
关键词:global sensitivity analysis; DSSAT; EFAST; wheat; yield; grain protein content



