Automatic Fish Population Counting by Machine Vision and a Hybrid Deep Neural Network Model
文献类型: 外文期刊
作者: Zhang, Song 1 ; Yang, Xinting 2 ; Wang, Yizhong 1 ; Zhao, Zhenxi 2 ; Liu, Jintao 2 ; Liu, Yang 2 ; Sun, Chuanheng 2 ; Zho 1 ;
作者机构: 1.Tianjin Univ Sci & Technol, Coll Elect Informat & Automat, Tianjin 300222, Peoples R China
2.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Natl Engn Lab Agriprod Qual Traceabil, Beijing 100097, Peoples R China
关键词: aquaculture; automatic fish counting; hybrid neural network; machine vision
期刊名称:ANIMALS ( 影响因子:2.752; 五年影响因子:2.942 )
ISSN: 2076-2615
年卷期: 2020 年 10 卷 2 期
页码:
收录情况: SCI
摘要: Simple Summary In aquaculture, the number of fish population can provide valuable input for the development of an intelligent production management system. Therefore, by using machine vision and a new hybrid deep neural network model, this paper proposes an automated fish population counting method to estimate the number of farmed Atlantic salmon. The experiment showed that the estimation accuracy can reach 95.06%, which can provide an essential reference for feeding and other breeding operations. In intensive aquaculture, the number of fish in a shoal can provide valuable input for the development of intelligent production management systems. However, the traditional artificial sampling method is not only time consuming and laborious, but also may put pressure on the fish. To solve the above problems, this paper proposes an automatic fish counting method based on a hybrid neural network model to realize the real-time, accurate, objective, and lossless counting of fish population in far offshore salmon mariculture. A multi-column convolution neural network (MCNN) is used as the front end to capture the feature information of different receptive fields. Convolution kernels of different sizes are used to adapt to the changes in angle, shape, and size caused by the motion of fish. Simultaneously, a wider and deeper dilated convolution neural network (DCNN) is used as the back end to reduce the loss of spatial structure information during network transmission. Finally, a hybrid neural network model is constructed. The experimental results show that the counting accuracy of the proposed hybrid neural network model is up to 95.06%, and the Pearson correlation coefficient between the estimation and the ground truth is 0.99. Compared with CNN- and MCNN-based methods, the accuracy and other evaluation indices are also improved. Therefore, the proposed method can provide an essential reference for feeding and other breeding operations.
- 相关文献
作者其他论文 更多>>
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Porphyrin fluorescence imaging for real-time monitoring and visualization of the freshness of beef stored at different temperatures
作者:Liu, Huan;Zhu, Lei;Ji, Zengtao;Zhang, Min;Yang, Xinting;Liu, Huan;Zhu, Lei;Ji, Zengtao;Yang, Xinting;Zhang, Min;Liu, Huan;Ji, Zengtao;Yang, Xinting;Liu, Huan;Ji, Zengtao;Yang, Xinting
关键词:Porphyrin; Fluorescence imaging; Beef; Freshness; Visualization
-
Plant-based proteins: advances in their sources, digestive profiles in vitro and potential health benefits
作者:Li, Mengzhuo;Qin, Peiyou;Zou, Liang;Qin, Peiyou;Zhang, Lizhen;Ren, Guixing;Liu, Yang;Zhao, Xiaoyan;Qin, Peiyou
关键词:Plant-based proteins; protein sources; in vitro digestion; processing; health benefits
-
Effects of Environmental Hypoxia on Serum Hematological and Biochemical Parameters, Hypoxia-Inducible Factor (hif) Gene Expression and HIF Pathway in Hybrid Sturgeon (Acipenser schrenckii ♂ x Acipenser baerii ♀)
作者:Ren, Yuanyuan;Cheng, Bo;Ren, Yuanyuan;Tian, Yuan;Liu, Yang;Yu, Huanhuan
关键词:hypoxia; physiological response; hypoxia-induced factor; HIF pathway; hybrid sturgeon
-
Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning
作者:Yue, Jibo;Wang, Jian;Guo, Wei;Ma, Xinming;Qiao, Hongbo;Yang, Guijun;Liu, Yang;Feng, Haikuan;Yue, Jibo;Yang, Guijun;Li, Changchun;Niu, Qinglin;Feng, Haikuan
关键词:Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral
-
FCFormer: fish density estimation and counting in recirculating aquaculture system
作者:Zhu, Kaijie;Ma, Pingchuan;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen
关键词:recirculating aquaculture systems; density estimation; fish counting; transformer; deep learning
-
Estimation of potato yield using a semi-mechanistic model developed by proximal remote sensing and environmental variables
作者:Fan, Yiguang;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Yang, Guijun;Feng, Haikuan;Fan, Yiguang;Yue, Jibo;Jin, Xiuliang;Feng, Haikuan
关键词:Potato; Yield; Remote sensing; Environmental variables



