Automatic Fish Population Counting by Machine Vision and a Hybrid Deep Neural Network Model
文献类型: 外文期刊
作者: Zhang, Song 1 ; Yang, Xinting 2 ; Wang, Yizhong 1 ; Zhao, Zhenxi 2 ; Liu, Jintao 2 ; Liu, Yang 2 ; Sun, Chuanheng 2 ; Zho 1 ;
作者机构: 1.Tianjin Univ Sci & Technol, Coll Elect Informat & Automat, Tianjin 300222, Peoples R China
2.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Natl Engn Lab Agriprod Qual Traceabil, Beijing 100097, Peoples R China
关键词: aquaculture; automatic fish counting; hybrid neural network; machine vision
期刊名称:ANIMALS ( 影响因子:2.752; 五年影响因子:2.942 )
ISSN: 2076-2615
年卷期: 2020 年 10 卷 2 期
页码:
收录情况: SCI
摘要: Simple Summary In aquaculture, the number of fish population can provide valuable input for the development of an intelligent production management system. Therefore, by using machine vision and a new hybrid deep neural network model, this paper proposes an automated fish population counting method to estimate the number of farmed Atlantic salmon. The experiment showed that the estimation accuracy can reach 95.06%, which can provide an essential reference for feeding and other breeding operations. In intensive aquaculture, the number of fish in a shoal can provide valuable input for the development of intelligent production management systems. However, the traditional artificial sampling method is not only time consuming and laborious, but also may put pressure on the fish. To solve the above problems, this paper proposes an automatic fish counting method based on a hybrid neural network model to realize the real-time, accurate, objective, and lossless counting of fish population in far offshore salmon mariculture. A multi-column convolution neural network (MCNN) is used as the front end to capture the feature information of different receptive fields. Convolution kernels of different sizes are used to adapt to the changes in angle, shape, and size caused by the motion of fish. Simultaneously, a wider and deeper dilated convolution neural network (DCNN) is used as the back end to reduce the loss of spatial structure information during network transmission. Finally, a hybrid neural network model is constructed. The experimental results show that the counting accuracy of the proposed hybrid neural network model is up to 95.06%, and the Pearson correlation coefficient between the estimation and the ground truth is 0.99. Compared with CNN- and MCNN-based methods, the accuracy and other evaluation indices are also improved. Therefore, the proposed method can provide an essential reference for feeding and other breeding operations.
- 相关文献
作者其他论文 更多>>
-
2D/0D Heterojunction Fluorescent Probe with Schottky Barrier Based on Ti3C2TX MXene Loaded Graphene Quantum Dots for Detection of H2S During Food Spoilage
作者:Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Yang, Xinting;Shi, Ce;Sun, Xia;Guo, Yemin;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Zhang, Jingbin;Zhang, Jingbin;Zhang, Jiaran
关键词:fluorescent probe; graphene quantum dots; H2S contamination; heterojunction; Ti3C2Tx MXene
-
DF-DETR: Dead fish-detection transformer in recirculating aquaculture system
作者:Fu, Tingting;Feng, Dejun;Li, Shantan;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao
关键词:DF-DETR; Dead fish detection; Feature fusion; Recirculating aquaculture system
-
DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring
作者:Chen, Xiao;Hu, Huan;Li, Tianjun;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Zhou, Zijie
关键词:Pest detection; YOLOv8; Fusion features; Small objects; Multiple scale detection
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Segmentation and Fractional Coverage Estimation of Soil, Illuminated Vegetation, and Shaded Vegetation in Corn Canopy Images Using CCSNet and UAV Remote Sensing
作者:Zhang, Shanxin;Yue, Jibo;Shu, Meiyan;Zhang, Shanxin;Wang, Xiaoyan;Feng, Haikuan;Feng, Haikuan;Liu, Yang
关键词:segmentation; digital camera; corn; deep learning
-
Estimation of potato above-ground biomass based on the VGC-AGB model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Bian, Mingbo;Liu, Yang;Chen, Riqiang;Ma, Yanpeng;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Yue, Jibo;Feng, Haikuan;Zhao, Chunjiang
关键词:Hyperspectral; Above-ground biomass; Potato; Deep learning; Leaf area index
-
Utilizing UAV-based hyperspectral remote sensing combined with various agronomic traits to monitor potato growth and estimate yield
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Fan, Jiejie;Ma, Yanpeng;Chen, Riqiang;Bian, Mingbo;Yang, Guijun;Liu, Yang;Yue, Jibo;Yang, Fuqin
关键词:Crop growth monitoring; Potato yield; Crop traits; UAV; Hyperspectral



