Estimation of potato chlorophyll content using composite hyperspectral index parameters collected by an unmanned aerial vehicle
文献类型: 外文期刊
作者: Li, Changchun 1 ; Chen, Peng 1 ; Ma, Chunyan 1 ; Feng, Haikuan 2 ; Wei, Fengyuan 1 ; Wang, Yilin 1 ; Shi, Jinjin 1 ; Cui, 1 ;
作者机构: 1.Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo, Henan, Peoples R China
2.Beijing Agr Informat Technol Res Ctr, Minist Agr, Key Lab, Beijing, Peoples R China
期刊名称:INTERNATIONAL JOURNAL OF REMOTE SENSING ( 影响因子:3.151; 五年影响因子:3.266 )
ISSN: 0143-1161
年卷期: 2020 年 41 卷 21 期
页码:
收录情况: SCI
摘要: Real-time monitoring of the nutritional status of potato crops enables rational and efficient decision-making about planting patterns and fertilization strategies that maximize yields. Chlorophyll is a useful index for measuring potatoes' nutritional status. Therefore, rapid and accurate estimation of chlorophyll content can be used to guide efforts to improve potato crop quality and yields. Here, we use hyperspectral potato crop data collected by an unmanned aerial vehicle (UAV) and correlate the data with vegetation indexes, spectral position, and area characteristic parameters, spectral resolution, and other index parameters to comprehensively analyse the chlorophyll content of experimental potato crops at different growth stages. We establish a model for estimating chlorophyll content and verify the accuracy of the model by using partial least squares, stepwise regression analysis, support vector machine, and random forest analytical methods. This study provides a new method for estimating the chlorophyll content of crops by using hyperspectral data. We find that the partial least squares (PLS) model based on hyperspectral reflection characteristic variables is optimal for estimating chlorophyll content during the budding and tuber stages of potato growth. The optimal model during tuber formation and starch accumulation is the stepwise regression model on the basis of vegetation indexes and spectral position and area characteristic parameters. Comprehensive results show that compared with the single index parameter, the comprehensive index parameter can be used to estimate the chlorophyll content of potatoes with higher accuracy and better effect; it can also be used to monitor the nutritional status of potatoes.
- 相关文献
作者其他论文 更多>>
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model
-
Retrieving the chlorophyll content of individual apple trees by reducing canopy shadow impact via a 3D radiative transfer model and UAV multispectral imagery
作者:Zhang, Chengjian;Chen, Zhibo;Chen, Riqiang;Zhang, Wenjie;Zhang, Chengjian;Chen, Riqiang;Zhang, Wenjie;Zhao, Dan;Yang, Guijun;Xu, Bo;Feng, Haikuan;Yang, Hao
关键词:Chlorophyll content; Shadows; Vegetation index (VI); Radiative transfer models (RTMs); Hybrid inversion model; Individual apple tree crown
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Segmentation and Fractional Coverage Estimation of Soil, Illuminated Vegetation, and Shaded Vegetation in Corn Canopy Images Using CCSNet and UAV Remote Sensing
作者:Zhang, Shanxin;Yue, Jibo;Shu, Meiyan;Zhang, Shanxin;Wang, Xiaoyan;Feng, Haikuan;Feng, Haikuan;Liu, Yang
关键词:segmentation; digital camera; corn; deep learning



