Estimation of potato chlorophyll content using composite hyperspectral index parameters collected by an unmanned aerial vehicle
文献类型: 外文期刊
作者: Li, Changchun 1 ; Chen, Peng 1 ; Ma, Chunyan 1 ; Feng, Haikuan 2 ; Wei, Fengyuan 1 ; Wang, Yilin 1 ; Shi, Jinjin 1 ; Cui, 1 ;
作者机构: 1.Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo, Henan, Peoples R China
2.Beijing Agr Informat Technol Res Ctr, Minist Agr, Key Lab, Beijing, Peoples R China
期刊名称:INTERNATIONAL JOURNAL OF REMOTE SENSING ( 影响因子:3.151; 五年影响因子:3.266 )
ISSN: 0143-1161
年卷期: 2020 年 41 卷 21 期
页码:
收录情况: SCI
摘要: Real-time monitoring of the nutritional status of potato crops enables rational and efficient decision-making about planting patterns and fertilization strategies that maximize yields. Chlorophyll is a useful index for measuring potatoes' nutritional status. Therefore, rapid and accurate estimation of chlorophyll content can be used to guide efforts to improve potato crop quality and yields. Here, we use hyperspectral potato crop data collected by an unmanned aerial vehicle (UAV) and correlate the data with vegetation indexes, spectral position, and area characteristic parameters, spectral resolution, and other index parameters to comprehensively analyse the chlorophyll content of experimental potato crops at different growth stages. We establish a model for estimating chlorophyll content and verify the accuracy of the model by using partial least squares, stepwise regression analysis, support vector machine, and random forest analytical methods. This study provides a new method for estimating the chlorophyll content of crops by using hyperspectral data. We find that the partial least squares (PLS) model based on hyperspectral reflection characteristic variables is optimal for estimating chlorophyll content during the budding and tuber stages of potato growth. The optimal model during tuber formation and starch accumulation is the stepwise regression model on the basis of vegetation indexes and spectral position and area characteristic parameters. Comprehensive results show that compared with the single index parameter, the comprehensive index parameter can be used to estimate the chlorophyll content of potatoes with higher accuracy and better effect; it can also be used to monitor the nutritional status of potatoes.
- 相关文献
作者其他论文 更多>>
-
Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Li, Jingbo;Xu, Bo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:AGB; Hyperspectral features; Deep features; SPA; LSTM; PLSR
-
Winter Wheat Yield Estimation with Color Index Fusion Texture Feature
作者:Yang, Fuqin;Yan, Jiayu;Guo, Lixiao;Tan, Jianxin;Meng, Xiangfei;Xiao, Yibo;Liu, Yang;Feng, Haikuan;Liu, Yang;Feng, Haikuan
关键词:UAV; color index; fusion texture; partial least squares; random forest
-
Pretrained Deep Learning Networks and Multispectral Imagery Enhance Maize LCC, FVC, and Maturity Estimation
作者:Hu, Jingyu;Feng, Hao;Shen, Jianing;Wang, Jian;Guo, Wei;Qiao, Hongbo;Yue, Jibo;Wang, Qilei;Liu, Yang;Liu, Yang;Feng, Haikuan;Yang, Hao;Niu, Qinglin;Niu, Qinglin
关键词:unmanned aerial vehicle; crop leaf chlorophyll content; fractional vegetation cover; maturity; deep learning; ensemble learning; maize
-
Improving potato above ground biomass estimation combining hyperspectral data and harmonic decomposition techniques
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Ma, Yanpeng;Bian, Mingbo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo
关键词:AGB; ASD; UHD185; Harmonic components; PLSR
-
A fast and lightweight detection model for wheat fusarium head blight spikes in natural environments
作者:Gao, Chunfeng;Guo, Wei;Gong, Zheng;Yue, Jibo;Fu, Yuanyuan;Yang, Chenghai;Feng, Haikuan
关键词:Deep learning; YOLOv5s; Fusarium head blight; Real -time detection; Lightweight architecture
-
A model suitable for estimating above-ground biomass of potatoes at different regional levels
作者:Liu, Yang;Fan, Yiguang;Ma, Yanpeng;Chen, Riqiang;Bian, Mingbo;Yang, Guijun;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:Potato; Hierarchical linear model; Hyperspectral; Meteorological data; Biomass
-
Real-time monitoring of maize phenology with the VI-RGS composite index using time-series UAV remote sensing images and meteorological data
作者:Feng, Ziheng;Ma, Xinming;Feng, Ziheng;Cheng, Zhida;Ren, Lipeng;Liu, Bowei;Zhang, Chengjian;Zhao, Dan;Sun, Heguang;Feng, Haikuan;Long, Huiling;Xu, Bo;Yang, Hao;Song, Xiaoyu;Yang, Guijun;Zhao, Chunjiang
关键词:UAV; Real-time; Composite index; Maize phenology; BBCH