Estimation of potato chlorophyll content using composite hyperspectral index parameters collected by an unmanned aerial vehicle
文献类型: 外文期刊
作者: Li, Changchun 1 ; Chen, Peng 1 ; Ma, Chunyan 1 ; Feng, Haikuan 2 ; Wei, Fengyuan 1 ; Wang, Yilin 1 ; Shi, Jinjin 1 ; Cui, 1 ;
作者机构: 1.Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo, Henan, Peoples R China
2.Beijing Agr Informat Technol Res Ctr, Minist Agr, Key Lab, Beijing, Peoples R China
期刊名称:INTERNATIONAL JOURNAL OF REMOTE SENSING ( 影响因子:3.151; 五年影响因子:3.266 )
ISSN: 0143-1161
年卷期: 2020 年 41 卷 21 期
页码:
收录情况: SCI
摘要: Real-time monitoring of the nutritional status of potato crops enables rational and efficient decision-making about planting patterns and fertilization strategies that maximize yields. Chlorophyll is a useful index for measuring potatoes' nutritional status. Therefore, rapid and accurate estimation of chlorophyll content can be used to guide efforts to improve potato crop quality and yields. Here, we use hyperspectral potato crop data collected by an unmanned aerial vehicle (UAV) and correlate the data with vegetation indexes, spectral position, and area characteristic parameters, spectral resolution, and other index parameters to comprehensively analyse the chlorophyll content of experimental potato crops at different growth stages. We establish a model for estimating chlorophyll content and verify the accuracy of the model by using partial least squares, stepwise regression analysis, support vector machine, and random forest analytical methods. This study provides a new method for estimating the chlorophyll content of crops by using hyperspectral data. We find that the partial least squares (PLS) model based on hyperspectral reflection characteristic variables is optimal for estimating chlorophyll content during the budding and tuber stages of potato growth. The optimal model during tuber formation and starch accumulation is the stepwise regression model on the basis of vegetation indexes and spectral position and area characteristic parameters. Comprehensive results show that compared with the single index parameter, the comprehensive index parameter can be used to estimate the chlorophyll content of potatoes with higher accuracy and better effect; it can also be used to monitor the nutritional status of potatoes.
- 相关文献
作者其他论文 更多>>
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation
作者:Sun, Heguang;Shu, Meiyan;Yue, Jibo;Guo, Wei;Sun, Heguang;Zhang, Jie;Feng, Ziheng;Feng, Haikuan;Song, Xiaoyu;Zhou, Lin
关键词:peanut southern blight; SMOTE; hyperspectral reflectance; machine learning; FOD
-
Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning
作者:Yue, Jibo;Wang, Jian;Guo, Wei;Ma, Xinming;Qiao, Hongbo;Yang, Guijun;Liu, Yang;Feng, Haikuan;Yue, Jibo;Yang, Guijun;Li, Changchun;Niu, Qinglin;Feng, Haikuan
关键词:Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral
-
Overridingly increasing vegetation sensitivity to vapor pressure deficit over the recent two decades in China
作者:Liu, Miao;Yang, Guijun;Li, Zhenhong;Gao, Meiling;Yang, Yun;Liu, Miao;Yang, Guijun;Long, Huiling;Meng, Yang;Hu, Haitang;Li, Heli;Yuan, Wenping;Li, Changchun;Yuan, Zhanliang;Meng, Yang
关键词:Vapor pressure deficit (VPD); Aridity index (AI); EVI; NIRv; Vegetation; Sensitivity
-
Estimation of potato yield using a semi-mechanistic model developed by proximal remote sensing and environmental variables
作者:Fan, Yiguang;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Yang, Guijun;Feng, Haikuan;Fan, Yiguang;Yue, Jibo;Jin, Xiuliang;Feng, Haikuan
关键词:Potato; Yield; Remote sensing; Environmental variables