A Novel Greenhouse-Based System for the Detection and Plumpness Assessment of Strawberry Using an Improved Deep Learning Technique
文献类型: 外文期刊
作者: Zhou, Chengquan 1 ; Hu, Jun 1 ; Xu, Zhifu 1 ; Yue, Jibo 3 ; Ye, Hongbao 1 ; Yang, Guijun 4 ;
作者机构: 1.Zhejiang Acad Agr Sci, Inst Agr Equipment, Hangzhou, Peoples R China
2.Zhejiang Acad Agr Sci, Food Sci Inst, Hangzhou, Peoples R China
3.Nanjing Univ, Int Inst Earth Syst Sci, Nanjing, Peoples R China
4.Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Minist Agr PR China, Beijing, Peoples R China
5.Natl Engn Res Ctr Informat Technol Agr, Beijing, Peoples R China
关键词: strawberry detection; deep learning; improved faster-RCNN; plumpness assessment; ground-based imaging system
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )
ISSN: 1664-462X
年卷期: 2020 年 11 卷
页码:
收录情况: SCI
摘要: The automated harvesting of strawberry brings benefits such as reduced labor costs, sustainability, increased productivity, less waste, and improved use of natural resources. The accurate detection of strawberries in a greenhouse can be used to assist in the effective recognition and location of strawberries for the process of strawberry collection. Furthermore, being able to detect and characterize strawberries based on field images is an essential component in the breeding pipeline for the selection of high-yield varieties. The existing manual examination method is error-prone and time-consuming, which makes mechanized harvesting difficult. In this work, we propose a robust architecture, named "improved Faster-RCNN," to detect strawberries in ground-level RGB images captured by a self-developed "Large Scene Camera System." The purpose of this research is to develop a fully automatic detection and plumpness grading system for living plants in field conditions which does not require any prior information about targets. The experimental results show that the proposed method obtained an average fruit extraction accuracy of more than 86%, which is higher than that obtained using three other methods. This demonstrates that image processing combined with the introduced novel deep learning architecture is highly feasible for counting the number of, and identifying the quality of, strawberries from ground-level images. Additionally, this work shows that deep learning techniques can serve as invaluable tools in larger field investigation frameworks, specifically for applications involving plant phenotyping.
- 相关文献
作者其他论文 更多>>
-
An automated lightweight approach for detecting dead fish in a recirculating aquaculture system
作者:Zhou, Chengquan;Wang, Chenye;Sun, Dawei;Hu, Jun;Ye, Hongbao;Wang, Chenye
关键词:YOLO; Dead fish; RAS; Image processing; Lightweight framework
-
Insights into the Metabolite Differentiation Mechanism Between Chinese Dry-Cured Fatty Ham and Lean Ham Through UPLC-MS/MS-Based Untargeted Metabolomics
作者:Xie, Ruoyu;Liu, Yaqiong;Wu, Xiaoli;Hu, Jun;Chen, Wenxuan;Zhao, Ke;Li, Huanhuan;Chen, Lihong;Zhang, Jin;Du, Hongying
关键词:fatty ham; lean ham; Chinese dry-cured ham; untargeted metabolomics; UPLC-MS/MS; differential metabolite
-
Efficient and Non-Invasive Grading of Chinese Mitten Crab Based on Fatness Estimated by Combing Machine Vision and Deep Learning
作者:Li, Jiangtao;Yang, Xiaolian;Ye, Hongbao;Zhou, Chengquan;Li, Zhuo;Wei, Qiquan;Li, Chen;Sun, Dawei;Ye, Hongbao;Zhou, Chengquan;Li, Chen;Sun, Dawei
关键词:Chinese mitten crab;
Eriocheir sinensis ; grading; machine learning; YOLO -
CNN-Transformer-BiGRU: A Pump Fault Detection Model for Industrialized Recirculating Aquaculture Systems
作者:Shao, Wei;Shao, Wei;Zhou, Chengquan;Sun, Dawei;Li, Chen;Ye, Hongbao;Zhou, Chengquan;Sun, Dawei;Li, Chen;Ye, Hongbao
关键词:aquaculture; BiGRU; convolutional neural network (CNN); fault detection; transformer
-
Nondestructive detection of multiple dried squid qualities by hyperspectral imaging combined with 1D-KAN-CNN
作者:Hu, Jun;Sun, Dawei;Zhou, Hongkui;Lou, Weidong;Zhang, Jin;Zhou, Chengquan;Chen, Wenxuan;Jiang, Yuanhao;Zhou, Chengquan;Chen, Wenxuan
关键词:Dried squid; Quality assessment; Kolmogorov-Arnold network; Wavelength selection; Hyperspectral imaging
-
A Novel Multinozzle Targeting Pollination Robot for Clustered Kiwifruit Flowers Based on Air-Liquid Dual-Flow Spraying
作者:Gao, Changqing;He, Leilei;Ding, Yusong;Murengami, Bryan Gilbert;Li, Rui;Fu, Longsheng;Chen, Jinyong;Chen, Jinyong;Zhou, Chengquan;Ye, Hongbao;Zhou, Chengquan;Ye, Hongbao
关键词:clustered kiwifruit flowers; multinozzle end-effector-optimal; pollination robot; spray parameters
-
Fd-CasBGRel: A Joint Entity-Relationship Extraction Model for Aquatic Disease Domains
作者:Ye, Hongbao;Lv, Lijian;Ye, Hongbao;Lv, Lijian;Zhou, Chengquan;Sun, Dawei;Ye, Hongbao;Zhou, Chengquan;Sun, Dawei
关键词:relational extraction; aquatic diseases; Casrel; fine-tuned pretrained model; self-attention mechanisms; relative position coding; BiLSTM; GHM loss function



