Rapid Determination of Soil Class Based on Visible-Near Infrared, Mid-Infrared Spectroscopy and Data Fusion
文献类型: 外文期刊
作者: Xu, Hanyi 1 ; Xu, Dongyun 1 ; Chen, Songchao 2 ; Ma, Wanzhu 3 ; Shi, Zhou 1 ;
作者机构: 1.Zhejiang Univ, Coll Environm & Resource Sci, Inst Agr Remote Sensing & Informat Technol Applic, Hangzhou 310058, Peoples R China
2.INRAE, Unite InfoSol, F-45075 Orleans, France
3.Zhejiang Acad Agr Sci, Inst Digital Agr, Hangzhou 310021, Peoples R China
4.Minist Agr, Key Lab Spect Sensing, Hangzhou 310058, Peoples R China
关键词: support vector machine; vis-NIR; MIR; outer product analysis; soil classification
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN:
年卷期: 2020 年 12 卷 9 期
页码:
收录情况: SCI
摘要: Wise soil management requires detailed soil information, but conventional soil class mapping in a rather coarse spatial resolution cannot meet the demand for precision agriculture. With the advantages of non-destructiveness, rapid cost-efficiency, and labor savings, the spectroscopic technique has proved its high potential for success in soil classification. Previous studies mainly focused on predicting soil classes using a single sensor. In this study, we attempted to compare the predictive ability of visible near infrared (vis-NIR) spectra, mid-infrared (MIR) spectra, and their fused spectra for soil classification. A total of 146 soil profiles were collected from Zhejiang, China, and the soil properties and spectra were measured by their genetic horizons. Along with easy-to-measure auxiliary soil information (soil organic matter, soil texture, color and pH), four spectral data, including vis-NIR, MIR, their simple combination (vis-NIR-MIR), and outer product analysis (OPA) fused spectra, were used for soil classification using a multiple objectives mixed support vector machine model. The independent validation results showed that the classification model using MIR (accuracy of 64.5%) was slightly better than that using vis-NIR (accuracy of 64.2%). The predictive model built on vis-NIR-MIR did not improve the classification accuracy, having the lowest accuracy of 61.1%, which likely resulted from an over-fitting problem. The model based on OPA fused spectra performed best with an accuracy of 68.4%. Our results prove the potential of fusing vis-NIR and MIR using OPA for improving prediction ability for soil classification.
- 相关文献
作者其他论文 更多>>
-
Prediction of soil organic carbon fractions in tropical cropland using a regional visible and near-infrared spectral library and machine learning
作者:Dai, Lingju;Wang, Zheng;Shi, Zhou;Chen, Songchao;Dai, Lingju;Chen, Songchao;Zhuo, Zhiqing;Ma, Yuxin
关键词:Particularly particulate organic carbon; Mineral-associated organic carbon; Memory-based learning; Spatial interpolation
-
Estimation of soil free Iron content using spectral reflectance and machine learning algorithms
作者:Ma, Wanzhu;Zhou, Hongkui;Hu, Hao;Zhuo, Zhiqing;Zhu, Kangying;Hu, Hao;Zhang, Guangzhi
关键词:Free iron content; Soil; Spectral reflectance; Machine learning; Deep neural network
-
Advancing Provincial Cropland Soil Mapping With Temporal Satellite Data Integration
作者:Wang, Xi;Zhou, Furong;Chen, Songchao;Shi, Zhou;Wang, Xi;Zhou, Furong;Chen, Songchao;Shi, Zhou;Chen, Songchao;Deng, Xunfei;Ren, Zhouqiao;Duan, Si-Bo;Wang, Mengru
关键词:digital soil mapping; management practices; satellite gap-filling; temporal information; time series satellite images
-
Spatiotemporal changes of soil organic carbon in intensive croplands over three decades: Emerging role of farmland utilization shifts
作者:Xiang, Mingtao;Chen, Xiaojia;Sheng, Meiling;Ren, Zhouqiao;Ma, Wanzhu;Deng, Xunfei;Chen, Songchao;Chen, Songchao;Wu, Chunyan;Sheng, Meiling;Ren, Zhouqiao;Ma, Wanzhu;Deng, Xunfei;Sheng, Meiling;Deng, Xunfei;Ming, Ming;Zhan, Yu
关键词:Farmland utilization shifts; Cropping pattern; Carbon accounting; Farmland partition
-
Potential of globally distributed topsoil mid-infrared spectral library for organic carbon estimation
作者:Hong, Yongsheng;Hong, Yongsheng;Sanderman, Jonathan;Hengl, Tomislav;Chen, Songchao;Wang, Nan;Xue, Jie;Shi, Zhou;Zhuo, Zhiqing;Peng, Jie;Li, Shuo;Chen, Yiyun;Liu, Yaolin;Mouazen, Abdul Mounem;Mouazen, Abdul Mounem
关键词:Soil monitoring; Mid-infrared spectroscopy; Soil spectral library; Fractional-order derivative; Deep learning
-
Using process-oriented model output to enhance machine learning-based soil organic carbon prediction in space and time
作者:Zhang, Lei;Yang, Lin;Zhang, Lei;Heuvelink, Gerard B. M.;Mulder, Vera L.;Heuvelink, Gerard B. M.;Chen, Songchao;Deng, Xunfei;Yang, Lin
关键词:Hybrid modelling; Mechanistic knowledge-guided machine; learning; RothC; Random forest; Digital soil mapping; Soil carbon dynamics
-
Improving model performance in mapping cropland soil organic matter using time-series remote sensing data
作者:Zhang, Xianglin;Chen, Songchao;Wang, Zheng;Chen, Xueyao;Xiao, Yi;Shi, Zhou;Xue, Jie;Chen, Songchao;Zhuo, Zhiqing;Shi, Zhou
关键词:cropland; soil organic matter; digital soil mapping; machine learning; feature selection; model averaging



