Soybean yield, nutrient uptake and stoichiometry under different climate regions of northeast China
文献类型: 外文期刊
作者: Zhao, Shicheng 1 ; Xu, Xinpeng 1 ; Wei, Dan 2 ; Lin, Xiaomao 3 ; Qiu, Shaojun 1 ; Ciampitti, Ignacio 3 ; He, Ping 1 ;
作者机构: 1.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Minist Agr, Key Lab Plant Nutr & Fertilizer, Beijing 100081, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Inst Plant Nutr & Resources, Beijing 100097, Peoples R China
3.Kansas State Univ, Dept Agron, Manhattan, KS 66506 USA
期刊名称:SCIENTIFIC REPORTS ( 影响因子:4.379; 五年影响因子:5.133 )
ISSN: 2045-2322
年卷期: 2020 年 10 卷 1 期
页码:
收录情况: SCI
摘要: Climate and soil fertility influence seed yield, nutrient uptake, and nutrient stoichiometry in the plant. We collected soybean [Glycine max (L.) Merr.] data were collected from field experiments in northeast China (warm and cold regions) to study the effect of temperature variations during the crop growing season on seed yield, nutrient uptake and stoichiometry from 2001 to 2017. Soybean seed yield has been increased in the cold region but not in the warm region, where average seed yield was higher. The indigenous nitrogen (N) supply followed the same trend as yield, greater in warmer environments but also increasing over time. The internal efficiency (IE) of N and potassium (K) performed similarly in both climate regions, but phosphorus (P) IE was 30% greater in the warm region than the cold region. For soybean nutrient uptake ratio, the N/K ratio was similar between both regions; however, the N/P ratio was greater in the warmer region relative to the colder region. Overall, the higher temperature experienced in the warm region increased soybean seed yield relative to the cold region, and high soil P accumulation caused soybean P luxury uptake in the cold region of northeast China.
- 相关文献
作者其他论文 更多>>
-
Optimized Nitrogen Fertilization Promoted Soil Organic Carbon Accumulation by Increasing Microbial Necromass Carbon in Potato Continuous Cropping Field
作者:Lv, Huidan;He, Ping;Zhao, Shicheng;Lv, Huidan;He, Ping;Zhao, Shicheng;Lv, Huidan;He, Ping;Zhao, Shicheng
关键词:nutrient expert; soil organic carbon fraction; microbial residue carbon; soil enzyme activity; optimizing fertilization
-
Response of soil microbial properties in the life cycle of potatoes to organic substitution regimes in North China
作者:Wang, Xiya;Zhao, Shicheng;Xu, Xinpeng;Liu, Mengjiao;He, Ping;Zhou, Wei;Wang, Xiya;Zhao, Shicheng;Xu, Xinpeng;Liu, Mengjiao;He, Ping;Zhou, Wei;Jiang, Rong;Zhang, Jun;Duan, Yu;He, Ping;Zhou, Wei
关键词:Organic substitution regime; Potato growth period; Soil chemistry properties; Soil microbial diversity; Soil microbial network
-
Bacteria Affect the Distribution of Soil-Dissolved Organic Matter on the Slope: A Long-Term Experiment in Black Soil Erosion
作者:Cai, Shanshan;Wang, Wei;Sun, Lei;Li, Yumei;Sun, Zhiling;Gao, Zhongchao;Zhang, Jiuming;Cai, Shanshan;Li, Yan;Wei, Dan
关键词:dissolved organic matter; black soil; slope; bacteria; fluorescence spectrum
-
Analysis of spatiotemporal land use change characteristics in the upper watershed area of the Qingshui River basin from 1990 to 2020
作者:Wang, Lei;Wang, Na;Pang, Min;Zhang, Qing;Wei, Dan;Li, Yan;An, Zhizhuang;Jin, Liang;Wang, Lei;Wang, Na;Pang, Min
关键词:Qingshui River basin; LULC; transfer matrix; redundancy analysis; driving factors
-
Rainfall Runoff and Nitrogen Loss Characteristics on the Miyun Reservoir Slope
作者:Wang, Na;Wang, Lei;Wu, Jiajun;Pang, Min;Yang, Zhixin;Xie, Jianzhi;Wang, Na;Wang, Lei;Jin, Liang;Pang, Min;Wei, Dan;Li, Yan;Wang, Junqiang;Xu, Ting
关键词:rain intensity; slope gradient; runoff; total nitrogen
-
Partial substitution of manure increases N2O emissions in the alkaline soil but not acidic soils
作者:Li, Haoruo;Li, Yuyi;Li, Haoruo;Song, Xiaotong;Wu, Di;Wei, Dan;Ju, Xiaotang
关键词:Nitrous oxide (N2O); Manure; Soil pH; Nitrification inhibitor; Microcosm experiment
-
Digestate induces significantly higher N2O emission compared to urea under different soil properties and moisture
作者:Li, Haoruo;Li, Haoruo;Wu, Di;Song, Xiaotong;Wei, Dan;Ju, Xiaotang
关键词:Nitrous oxide; Digestate; Urea; Soil properties; Soil moisture; Nitrification inhibitor



