Determination of starch content in single kernel using near-infrared hyperspectral images from two sides of corn seeds
文献类型: 外文期刊
作者: Liu, Chen 1 ; Huang, Wenqian 1 ; Yang, Guiyan 1 ; Wang, Qingyan 1 ; Li, Jiangbo 1 ; Chen, Liping 1 ;
作者机构: 1.Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China; Natl Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China; Minist Agr, Key Lab Agriinformat, Beijing 100097, Peoples R China; Beijing Key Lab Intelligent Equipment Technol Agr, Beijing 100097, Peoples R China
关键词: NIR hyperspectral imaging; Corn seeds; Starch content; Characteristic wavelength selection; Model establishment
期刊名称:INFRARED PHYSICS & TECHNOLOGY ( 影响因子:2.638; 五年影响因子:2.581 )
ISSN: 1350-4495
年卷期: 2020 年 110 卷
页码:
收录情况: SCI
摘要: Rapid, non-destructive and reliable detection of starch content in single seed is significant to facilitate the breeding of high-starch corn but difficult for a traditional method of seed composition analysis. This study investigated the possibility of using near-infrared (NIR) hyperspectral imaging technology to determine the starch content in a single kernel corn seed. The hyperspectral images including embryo-up and embryo-down orientations of a corn seed were acquired with a range of 930-2500 nm. The characteristic spectrum of each corn seed was calculated by averaging the two sides' spectra. All spectra were preprocessed by the smoothing and derivative algorithm, and then, the characteristic wavelengths were selected by competitive adaptive reweighted sampling (CARS) method. The selected wavelengths were used as the inputs to develop partial least squares regression (PLSR) and nonlinear statistical data models with artificial neural networks (ANN) algorithm. The results indicated that the ANN prediction model based on Levenberg-Marquardt algorithm (LMA) was the optimal for starch content determination with correlation coefficient (R-p) of 0.96 and root mean square error of prediction (RMSEP) of 0.98 in prediction sets. Therefore, NIR hyperspectral imaging technology combined with appropriate chemometric analysis can be considered as a useful tool for starch content determination in corn seed at a kernel level. These results can provide a useful reference for rapid and non-destructive detection of other chemical composition in single corn seed.
- 相关文献
作者其他论文 更多>>
-
Determination of the SSC in oranges using Vis-NIR full transmittance hyperspectral imaging and spectral visual coding: A practical solution to the scattering problem of inhomogeneous mixtures
作者:Cai, Letian;Li, Jiangbo;Zhang, Yizhi;Hao, Haoyuan;Cai, Letian;Zhang, Junyi;Zhang, Hailiang;Zhang, Yizhi
关键词:Citrus; SSC detection; Hyperspectral transmittance imaging; Spectral visual coding; Feature selection
-
Improving UASS pesticide application: optimizing and validating drift and deposition simulations
作者:Tang, Qing;Zhang, Ruirui;Chen, Liping;Zhang, Pan;Li, Longlong;Xu, Gang;Yi, Tongchuan;Tang, Qing;Zhang, Ruirui;Chen, Liping;Zhang, Pan;Li, Longlong;Xu, Gang;Yi, Tongchuan;Hewitt, Andrew
关键词:lattice Boltzmann method (LBM); unmanned aerial spraying systems (UASS); Pest management; pesticide drift and deposition; optimization
-
Hyperspectral transmittance imaging detection of early decayed oranges caused by Penicillium digitatum using NFINDR-JMSAM algorithm with spectral feature separating
作者:Cai, Letian;Chen, Liping;Li, Xuetong;Zhang, Yizhi;Shi, Ruiyao;Li, Jiangbo;Cai, Letian
关键词:Citrus; Decay detection; Hyperspectral transmittance imaging; NFINDR-JMSAM; Spectral separation
-
Construction of a stable YOLOv8 classification model for apple bruising detection based on physicochemical property analysis and structured-illumination reflectance imaging
作者:Zhang, Junyi;Chen, Liping;Cai, Zhonglei;Shi, Ruiyao;Cai, Letian;Li, Jiangbo;Zhang, Junyi;Luo, Liwei;Yang, Xuhai;Li, Jiangbo
关键词:Apple; Bruising detection; Physicochemical property analysis; Structured-illumination reflectance imaging; Deep learning model
-
YOLO-detassel: Efficient object detection for Omitted Pre-Tassel in detasseling operation for maize seed production
作者:Yang, Jiaxuan;Zhang, Ruirui;Ding, Chenchen;Chen, Liping;Xie, Yuxin;Ou, Hong;Yang, Jiaxuan;Zhang, Ruirui;Ding, Chenchen;Chen, Liping;Xie, Yuxin;Ou, Hong;Yang, Jiaxuan;Chen, Liping
关键词:Detasseling; Object detection; UAV; Deep learning; Maize hybrid seed production
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Combining dual-wavelength laser-induced fluorescence hyperspectral imaging with mutual information decomposition and redundancy elimination method to detect Aflatoxin B1 of individual maize kernels
作者:Fan, Yaoyao;Kang, Jian;Chen, Liping;Fan, Yaoyao;Yao, Xueying;Wang, Zheli;Long, Yuan;Chen, Liping;Huang, Wenqian;Tian, Xi;Tian, Xi
关键词:Dual-wavelength; Fluorescence hyperspectral imaging; Mutual information; Information decomposition; Maize kernels; Aflatoxin B1



