Optimized synthesis of layered double hydroxide lactate nanosheets and their biological effects on Arabidopsis seedlings
文献类型: 外文期刊
作者: Wu, Hongyang 1 ; Zhang, He 1 ; Li, Xinyu 1 ; Zhang, Yu 5 ; Wang, Jiankun 2 ; Wang, Qiang 5 ; Wan, Yinglang 1 ;
作者机构: 1.Hainan Univ, Coll Trop Crops, Hainan Key Lab Sustainable Utilizat Trop Bioresou, Haikou 570228, Hainan, Peoples R China
2.Beijing Forestry Univ, Coll Biol Sci & Biotechnol, Beijing 100083, Peoples R China
3.Chinese Acad Agr Sci, Inst Vegetables & Flowers, Beijing 100081, Peoples R China
4.Chinese Acad Trop Agr Sci, Environm & Plant Protect Inst, Key Lab Integrated Pest Management Trop Crops, Minist Agr & Rural Affairs, Haikou 571101, Hainan, Peoples R China
5.Beijing Forestry Univ, Coll Environm, Beijing 100083, Peoples R China
关键词: LDH-lactate-NS; Cytotoxicity; Promote root elongation; Auxin flux
期刊名称:PLANT METHODS ( 影响因子:5.827; 五年影响因子:5.904 )
ISSN:
年卷期: 2022 年 18 卷 1 期
页码:
收录情况: SCI
摘要: Background Layered double hydroxide lactate nanosheets (LDH-lactate-NS) are powerful carriers for delivering macro-molecules into intact plant cells. In the past few years, some studies have been carried out on DNA/RNA transformation and plant disease resistance, but little attention has been paid to these factors during LDH-lactate-NS synthesis and delamination, nor has their relationship to the DNA adsorption capacity or transformation efficiency of plant cells been considered. Results Since the temperature during delamination alters particle sizes and zeta potentials of LDH-lactate-NS products, we compared the LDH-lactate-NS stability, DNA adsorption rate and delivery efficiency of fluorescein isothiocyanate isomer I (FITC) of them, found that the LDH-lactate-NS obtained at 25 degrees C has the best characters for delivering biomolecules into plant cell. To understand the potential side effects and cytotoxicity of LDH-lactate-NS to plants, we compared the root growth rate between the Arabidopsis thaliana seedlings grown in the culture medium with 1-300 mu g/mL LDH-lactate-NS and equivalent raw material, Mg(lactate)(2) and Al (lactate)(3). Phenotypic analysis showed LDH in a range of 1-300 mu g/mL can enhance the root elongation, whereas the same concentration of raw materials dramatically inhibited root elongation, suggesting the nanocrystallization has a dramatical de-toxic effect to Mg(lactate)(2) and Al (lactate)(3.) Since enhancing of root elongation by LDH is an unexpected phenomenon, we further designed experiments to investigate influence of LDH to Arabidopsis seedlings. We further used the gravitropic bending test, qRT-PCR analysis of auxin transport proteins, non-invasive micro-test technology and liquid chromatography-mass spectrometry to investigate the auxin transport and distribution in Arabidopsis root. Results indicated that LDH-lactate-NS affect root growth by increasing the polar auxin transport. Conclusions Optimal synthesized LDH-lactate-NS can delivery biomolecules into intact plant cells with high efficiency and low cytotoxity. The working solution of LDH-lactate-NS can promote root elongation via increase the polar auxin transport in Arabidopsis roots.
- 相关文献
作者其他论文 更多>>
-
Caffeic Acid O-Methyltransferase Gene Family in Mango (Mangifera indica L.) with Transcriptional Analysis under Biotic and Abiotic Stresses and the Role of MiCOMT1 in Salt Tolerance
作者:Wang, Huiliang;Chen, Zhuoli;Zhang, Mengting;Zhang, He;Wang, Huiliang;Chen, Zhuoli;Lei, Chen;Zhang, Mengting;Pu, Jinji;Zhang, He;Chen, Zhuoli;Luo, Ruixiong;Gao, Aiping
关键词:COMT gene family; salt tolerance; transcriptional analysis; transient overexpression
-
The CsPbs2-interacting protein oxalate decarboxylase CsOxdC3 modulates morphosporogenesis, virulence, and fungicide resistance in Colletotrichum siamense
作者:Lu, Jingwen;Liu, Yu;Song, Miao;Xi, Yitao;Yang, Hong;Liu, Wenbo;Li, Xiao;Norvienyeku, Justice;Zhang, Yu;Miao, Weiguo;Lin, Chunhua;Yang, Hong
关键词:Colletotrichum siamense; HOG MAPK pathway; Oxalate decarboxylase; Stress homeostasis; Fungicide sensitivity; Virulence
-
"Qi Nan" agarwood restores podocyte autophagy in diabetic kidney disease by targeting EGFR signaling pathway
作者:Li, Ning;Liu, Xuenan;Duan, Yingling;Zhang, Yu;Lan, Tian;Wang, Hao;Dai, Haofu;Lan, Tian;Zhou, Ping
关键词:DKD; "QN" agarwood; Podocytes; Autophagy; EGFR
-
StMAPKK5 responds to heat stress by regulating potato growth, photosynthesis, and antioxidant defenses
作者:Zhu, Xi;Li, Wei;Jin, Hui;Duan, Huimin;Chen, Zhuo;Chen, Shu;Wang, Qihua;Tang, Jinghua;Zhou, Jiannan;Zhang, Yu;Zhu, Xi;Li, Wei;Jin, Hui;Duan, Huimin;Chen, Zhuo;Chen, Shu;Wang, Qihua;Tang, Jinghua;Zhou, Jiannan;Zhang, Yu;Zhu, Xi;Zhang, Ning;Si, Huaijun;Zhang, Ning;Si, Huaijun
关键词:potato; heat stress; StMAPKK5; transpiration; photosynthesis
-
Identification of the ERF gene family of Mangifera indica and the defense response of MiERF4 to Xanthomonas campestris pv. mangiferaeindicae
作者:Lei, Chen;Zhang, He;Lei, Chen;Zhang, Mengting;Wang, Huiliang;Zhang, He;Dang, Zhiguo;Zhu, Min;Chen, Yeyuan;Zhu, Min;Chen, Yeyuan
关键词:Mangifera indica; ERF gene family; Expression profile; JA/ETH signaling pathway; Callose; Defense
-
The fatty acid 2-hydroxylase CsSCS7 is a key hyphal growth factor and potential control target in Colletotrichum siamense
作者:Xi, Yitao;Long, Xiping;Song, Miao;Liu, Yu;Yan, Jingting;Lv, Yanyun;Yang, Hong;Zhang, Yu;Miao, Weiguo;Lin, Chunhua;Yang, Hong
关键词:Colletotrichum siamense; fatty acid hydroxylase CsSCS7; hyphal growth factor; control target
-
Oil Palm AP2 Subfamily Gene EgAP2.25 Improves Salt Stress Tolerance in Transgenic Tobacco Plants
作者:Zhou, Lixia;Cao, Hongxing;Zeng, Xianhai;Wu, Qiufei;Li, Qihong;Martin, Jerome Jeyakumar John;Fu, Dengqiang;Liu, Xiaoyu;Li, Xinyu;Li, Rui;Ye, Jianqiu;Zhou, Lixia;Cao, Hongxing;Zeng, Xianhai;Wu, Qiufei;Li, Qihong;Martin, Jerome Jeyakumar John;Fu, Dengqiang;Liu, Xiaoyu;Li, Xinyu;Li, Rui;Ye, Jianqiu
关键词:EgAP2.25 gene; oil palm; tobacco; salinity stress; physiological and biochemical indexes; stress marker genes