您好,欢迎访问中国热带农业科学院 机构知识库!

Developing non-invasive 3D quantificational imaging for intelligent coconut analysis system with X-ray

文献类型: 外文期刊

作者: Zhang, Yu 1 ; Liu, Qianfan 1 ; Chen, Jing 2 ; Sun, Chengxu 3 ; Lin, Shenghuang 2 ; Cao, Hongxing 3 ; Xiao, Zhaolin 4 ; Huang, Mengxing 1 ;

作者机构: 1.Hainan Univ, Sch Comp Sci & Technol, Haikou, Peoples R China

2.Cent South Univ, Xiangya Sch Med, Radiol Dept, Affiliated Haikou Hosp, Haikou, Peoples R China

3.Chinese Acad Trop Agr Sci, Coconut Res Inst, Wenchang, Peoples R China

4.Xian Univ Technol, Sch Comp Sci & Engn, Xian, Peoples R China

5.Hainan Univ, Sch Informat & Commun Engn, Haikou, Peoples R China

关键词: Intelligent coconut analysis; Non-invasive; Point cloud; Quantitative imaging model

期刊名称:PLANT METHODS ( 影响因子:5.1; 五年影响因子:6.1 )

ISSN:

年卷期: 2023 年 19 卷 1 期

页码:

收录情况: SCI

摘要: BackgroundAs one of the largest drupes in the world, the coconut has a special multilayered structure and a seed development process that is not yet fully understood. On the one hand, the special structure of the coconut pericarp prevents the development of external damage to the coconut fruit, and on the other hand, the thickness of the coconut shell makes it difficult to observe the development of bacteria inside it. In addition, coconut takes about 1 year to progress from pollination to maturity. During the long development process, coconut development is vulnerable to natural disasters, cold waves, typhoons, etc. Therefore, nondestructive observation of the internal development process remains a highly important and challenging task. In this study, We proposed an intelligent system for building a three-dimensional (3D) quantitative imaging model of coconut fruit using Computed Tomography (CT) images. Cross-sectional images of coconut fruit were obtained by spiral CT scanning. Then a point cloud model was built by extracting 3D coordinate data and RGB values. The point cloud model was denoised using the cluster denoising method. Finally, a 3D quantitative model of a coconut fruit was established.ResultsThe innovations of this work are as follows. 1) Using CT scans, we obtained a total of 37,950 non-destructive internal growth change maps of various types of coconuts to establish a coconut data set called "CCID", which provides powerful graphical data support for coconut research. 2) Based on this data set, we built a coconut intelligence system. By inputting a batch of coconut images into a 3D point cloud map, the internal structure information can be ascertained, the entire contour can be drawn and rendered according to need, and the long diameter, short diameter and volume of the required structure can be obtained. We maintained quantitative observation on a batch of local Hainan coconuts for more than 3 months. With 40 coconuts as test cases, the high accuracy of the model generated by the system is proven. The system has a good application value and broad popularization prospects in the cultivation and optimization of coconut fruit.ConclusionThe evaluation results show that the 3D quantitative imaging model has high accuracy in capturing the internal development process of coconut fruits. The system can effectively assist growers in internal developmental observations and in structural data acquisition from coconut, thus providing decision-making support for improving the cultivation conditions of coconuts.

  • 相关文献
作者其他论文 更多>>