CabbageNet: Deep Learning for High-Precision Cabbage Segmentation in Complex Settings for Autonomous Harvesting Robotics
文献类型: 外文期刊
作者: Tian, Yongqiang 1 ; Cao, Xinyu 1 ; Zhang, Taihong 1 ; Wu, Huarui 4 ; Zhao, Chunjiang 4 ; Zhao, Yunjie 1 ;
作者机构: 1.Xinjiang Agr Univ, Sch Comp & Informat Engn, Urumqi 830052, Peoples R China
2.Minist Educ, Engn Res Ctr Intelligent Agr, Urumqi 830052, Peoples R China
3.Xinjiang Agr Informatizat Engn Technol Res Ctr, Urumqi 830052, Peoples R China
4.Natl Engn Res Ctr Informat Technol Agr, Beijing 100125, Peoples R China
5.Minist Agr & Rural Affairs, Key Lab Digital Village Technol, Beijing 100125, Peoples R China
关键词: cabbage; deep learning; instance segmentation; automatic harvesting; intelligent agriculture
期刊名称:SENSORS ( 影响因子:3.5; 五年影响因子:3.7 )
ISSN:
年卷期: 2024 年 24 卷 24 期
页码:
收录情况: SCI
摘要: Reducing damage and missed harvest rates is essential for improving efficiency in unmanned cabbage harvesting. Accurate real-time segmentation of cabbage heads can significantly alleviate these issues and enhance overall harvesting performance. However, the complexity of the growing environment and the morphological variability of field-grown cabbage present major challenges to achieving precise segmentation. This study proposes an improved YOLOv8n-seg network to address these challenges effectively. Key improvements include modifying the baseline model's final C2f module and integrating deformable attention with dynamic sampling points to enhance segmentation performance. Additionally, an ADown module minimizes detail loss from excessive downsampling by using depthwise separable convolutions to reduce parameter count and computational load. To improve the detection of small cabbage heads, a Small Object Enhance Pyramid based on the PAFPN architecture is introduced, significantly boosting performance for small targets. The experimental results show that the proposed model achieves a Mask Precision of 92.2%, Mask Recall of 87.2%, and Mask mAP50 of 95.1%, while maintaining a compact model size of only 6.46 MB. These metrics indicate superior accuracy and efficiency over mainstream instance segmentation models, facilitating real-time, precise cabbage harvesting in complex environments.
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding
-
Water phase distribution and its dependence on internal structure in soaking maize kernels: a study using low-field nuclear magnetic resonance and X-ray micro-computed tomography
作者:Wang, Baiyan;Zhao, Chunjiang;Wang, Baiyan;Gu, Shenghao;Wang, Juan;Wang, Guangtao;Guo, Xinyu;Zhao, Chunjiang
关键词:phenotyping; hydration; water absorption; seed emergence; kernel moisture



