Calculation Method of Canopy Dynamic Meshing Division Volumes for Precision Pesticide Application in Orchards Based on LiDAR
文献类型: 外文期刊
作者: Wang, Mengmeng 1 ; Dou, Hanjie 1 ; Sun, Hongyan 2 ; Zhai, Changyuan 1 ; Zhang, Yanlong 1 ; Yuan, Feixiang 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Intelligent Equipment Res Ctr, Beijing 100097, Peoples R China
2.China Univ Geosci, Sch Sci, Beijing 100083, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
关键词: canopy volume; dynamic meshing; LiDAR; orchard; variable spray
期刊名称:AGRONOMY-BASEL ( 影响因子:3.7; 五年影响因子:4.0 )
ISSN:
年卷期: 2023 年 13 卷 4 期
页码:
收录情况: SCI
摘要: The canopy volume of fruit trees is an important input for the precise and varying application of pesticides in orchards. The fixed mesh division method is mostly used to calculate canopy volumes with variable target-oriented spraying. To reduce the influence of the working speed on the detection accuracy under a fixed mesh width division, the cuboid accumulation of divided areas (CADAs), which is a light detection and ranging (LiDAR) online detection method for a fruit tree canopy volume based on dynamic mesh division, is proposed in this paper. In the method, the area is divided according to the number of unilateral nozzles of the sprayer in the canopy height direction of the fruit tree, and the mesh width is dynamically adjusted according to the change in the working speed in the moving direction of the sprayer. To verify the accuracy and applicability of the method, the simulation canopy and peach tree canopy detection experiments were carried out. The test results show that the CADA method can be used to calculate the contour and volume of the canopy. However, detection errors easily occur at the edge of the canopy, resulting in a detection error of 8.33% for the simulated canopy volume. The CADA method has a good detection accuracy under different moving speeds and fruit tree canopy sizes. At a speed of 1 m/s, the detection accuracy of the canopy volume reaches 99.18%. Compared with the existing canopy volume calculation methods based on the alpha-shape algorithm and canopy meshing-profile characterization (CMPC), the detection accuracy of the CADA method is 2.73% and 7.22% better, respectively. This method can not only reduce the influence of the moving speed on the detection accuracy of the canopy volume, but also improve the detection accuracy. Thus, this method can provide theoretical support for the research and development of target-oriented variable spraying control systems for orchards.
- 相关文献
作者其他论文 更多>>
-
Deposition Characteristics of Air-Assisted Sprayer Based on Canopy Volume and Leaf Area of Orchard Trees
作者:Gu, Chenchen;Sun, Jiahui;Li, Si;Yang, Shuo;Zhai, Changyuan;Gu, Chenchen;Li, Si;Yang, Shuo;Zou, Wei
关键词:canopy volume; leaf area; air-assisted spraying; precision application; deposition characteristics
-
Characteristics of Spot Spraying and Continuous Spraying Systems
作者:Zhao, Xueguan;Zhang, Chunfeng;Zhao, Xueguan;Ma, Zhanwei;Zhang, Chunfeng;Wang, Zhichong;Zhai, Changyuan;Ma, Zhanwei;Zhang, Xinwei;Chen, Jing
关键词:spot spraying method; atomization characteristics; spray angle; spray height; target size
-
Effective methods for mitigate the impact of light occlusion on the accuracy of online cabbage recognition in open fields
作者:Fu, Hao;Chen, Liping;Fu, Hao;Zha, Xueguan;Ta, Haoran;Zheng, Shengyu;Zhai, Changyuan;Chen, Liping
关键词:Cabbage; Light occlusion; Object detection; Online recognition
-
Design and Experimental Evaluation of a Smart Intra-Row Weed Control System for Open-Field Cabbage
作者:Zheng, Shenyu;Zhai, Changyuan;Chen, Liping;Zheng, Shenyu;Fu, Hao;Tan, Haoran;Zhai, Changyuan;Chen, Liping;Zhao, Xueguan
关键词:precision agriculture; intra-row weeding; control system; crop protection; robotic weeding
-
HAD-YOLO: An Accurate and Effective Weed Detection Model Based on Improved YOLOV5 Network
作者:Deng, Long;Miao, Zhonghua;Deng, Long;Zhao, Xueguan;Yang, Shuo;Zhai, Changyuan;Zhao, Chunjiang;Zhao, Xueguan;Zhai, Changyuan;Zhao, Chunjiang;Gao, Yuanyuan
关键词:weed identification; YOLOV5; HAD-YOLO; deep learning; small target detection; multi-scale feature fusion; precision agriculture
-
Non-Contact Detection of Wine Grape Load Volume in Hopper During Mechanical Harvesting
作者:Liu, Haowei;Zhai, Changyuan;Liu, Haowei;Wang, Xiu;Song, Jian;Chen, Mingzhou;Li, Cuiling;Wang, Xiu;Zhai, Changyuan;Song, Jian
关键词:wine grapes; ultrasonic sensors; load detection; regression model
-
Design and Experiment of Orchard Air-Assisted Sprayer with Airflow Graded Control
作者:Feng, Fan;Zhai, Changyuan;Hao, Jianjun;Feng, Fan;Dou, Hanjie;Zhai, Changyuan;Zhang, Yanlong;Zou, Wei;Dou, Hanjie;Zou, Wei
关键词:orchard sprayer; variable-rate spraying; variable air inlet area; airflow graded control; spray deposition; spray drift



