Tomato Disease Classification and Identification Method Based on Multimodal Fusion Deep Learning
文献类型: 外文期刊
作者: Zhang, Ning 1 ; Wu, Huarui 1 ; Zhu, Huaji 1 ; Deng, Ying 1 ; Han, Xiao 1 ;
作者机构: 1.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
2.Beijing Univ Agr, Coll Comp & Informat Engn, Beijing 102206, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing 100097, Peoples R China
4.Minist Agr & Rural Affairs, Key Lab Qual Testing Software & Hardware Prod Agr, Beijing 100097, Peoples R China
关键词: multimodal fusion; transfer learning; ResNet34; residual network; disease diagnosis
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.408; 五年影响因子:3.459 )
ISSN:
年卷期: 2022 年 12 卷 12 期
页码:
收录情况: SCI
摘要: Considering that the occurrence and spread of diseases are closely related to the planting environment, a tomato disease diagnosis method based on Multi-ResNet34 multi-modal fusion learning based on residual learning is proposed for the problem of limited recognition rate of a single RGB image of a tomato disease. Based on the ResNet34 backbone network, this paper introduces transfer learning to speed up training, reduce data dependencies, and prevent overfitting due to a small amount of sample data; it also integrates multi-source data (tomato disease image data and environmental parameters). The feature-level multi-modal data fusion method is used to retain the key information of the data to identify the feature, so that the different modal data can complement, support and correct each other, and obtain a more accurate identification effect. Firstly, Mask R-CNN was used to extract partial images of leaves from complex background tomato disease images to reduce the influence of background regions on disease identification. Then, the formed image environment data set was input into the multi-modal fusion model to obtain the identification results of disease types. The proposed multi-modal fusion model Multi-ResNet34 has a classification accuracy of 98.9% for six tomato diseases: bacterial spot, late blight, leaf mold, yellow aspergillosis, gray mold, and early blight, which is higher than that of the single-modal model. With the increase by 1.1%, the effect is obvious. The method in this paper can provide an important basis for the analysis and diagnosis of tomato intelligent greenhouse diseases in the context of agricultural informatization.
- 相关文献
作者其他论文 更多>>
-
Research on Positioning and Navigation System of Greenhouse Mobile Robot Based on Multi-Sensor Fusion
作者:Cheng, Bo;Li, Xiaoyue;Zhang, Ning;Song, Weitang;He, Xueying;Wu, Huarui
关键词:agricultural greenhouse; navigation robot; multi-sensor fusion; ultra-wideband; inertial measurement unit; odometry; rangefinder
-
Cabbage Transplantation State Recognition Model Based on Modified YOLOv5-GFD
作者:Sun, Xiang;Miao, Yisheng;Wang, Yuansheng;Li, Qingxue;Zhu, Huaji;Wu, Huarui;Sun, Xiang;Miao, Yisheng;Wu, Xiaoyan;Wang, Yuansheng;Li, Qingxue;Zhu, Huaji;Wu, Huarui;Sun, Xiang;Miao, Yisheng;Wang, Yuansheng;Li, Qingxue;Zhu, Huaji;Wu, Huarui;Wu, Xiaoyan
关键词:the state of cabbage transplantation; target detection; deep separable convolution; YOLOv5s
-
A Study of Kale Recognition Based on Semantic Segmentation
作者:Wu, Huarui;Guo, Wang;Liu, Chang;Sun, Xiang;Wu, Huarui;Guo, Wang;Liu, Chang;Sun, Xiang;Wu, Huarui;Guo, Wang;Liu, Chang;Sun, Xiang
关键词:kale; semantic segmentation; Swin transformer; UperNet
-
Greenhouse light and CO2 regulation considering cost and photosynthesis rate using i-nsGA II
作者:Gao, Pan;Lu, Miao;Yang, Yongxia;Hu, Jin;Gao, Pan;Lu, Miao;Hu, Jin;Wu, Huarui;Mao, Hanping
关键词:Multi-objective optimization; Photosynthesis rate; Curvature theory; Environmental regulation; Regulation cost
-
Eliminating Primacy Bias in Online Reinforcement Learning by Self-Distillation
作者:Li, Jingchen;Wu, Huarui;Zhao, Chunjiang;Shi, Haobin;Hwang, Kao-Shing
关键词:Online reinforcement learning; overfitting; reinforcement learning
-
Recognition Method of Cabbage Heads at Harvest Stage under Complex Background Based on Improved YOLOv8n
作者:Tian, Yongqiang;Zhang, Taihong;Zhao, Yunjie;Zhao, Chunjiang;Wu, Huarui;Zhang, Taihong;Zhao, Yunjie;Zhang, Taihong;Zhao, Yunjie;Wu, Huarui
关键词:cabbage; recognition and localization; object detection; deep learning; automatic harvesting
-
DFYOLOv5m-M2transformer: Interpretation of vegetable disease recognition results using image dense captioning techniques
作者:Sun, Wei;Wang, Chunshan;Wu, Huarui;Miao, Yisheng;Zhu, Huaji;Guo, Wang;Sun, Wei;Wang, Chunshan;Li, Jiuxi;Wu, Huarui;Miao, Yisheng;Zhu, Huaji;Guo, Wang;Wu, Huarui;Miao, Yisheng;Zhu, Huaji;Guo, Wang;Sun, Wei;Wang, Chunshan;Li, Jiuxi
关键词:Image captioning; Disease recognition; YOLOv5m; M2-Transformer; Two-stage; NWD



