文献类型: 外文期刊
作者: Zhai, Jiawei 1 ; Duan, Shuhao 1 ; Luo, Bin 1 ; Jin, Xiaotong 1 ; Dong, Hongtu 1 ; Wang, Xiaodong 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Intelligent Equipment Res Ctr, Beijing 100097, Peoples R China
2.Beijing Univ Technol, Fac Informat Technol, Dept Artificial Intelligence & Automat, Beijing 100124, Peoples R China
3.Minist Agr & Rural Affairs, Key Lab Agr Sensors, Beijing 100097, Peoples R China
期刊名称:ANALYTICAL METHODS ( 影响因子:2.6; 五年影响因子:2.8 )
ISSN: 1759-9660
年卷期: 2024 年 16 卷 47 期
页码:
收录情况: SCI
摘要: Agriculture has a substantial demand for classification, and each agricultural product exhibits a unique ion signal. This paper summarizes the classification techniques of ion-selective electrode arrays in agriculture. Initially, data sample collection methods based on ion-selective electrode arrays are summarized. The paper then discusses the current state of classification algorithms from the perspectives of machine learning, artificial neural networks, extreme learning machines, and deep learning, along with their existing research in ion-selective electrodes and related fields. Then, the potential applications in crop and livestock growth status classification, soil classification, agricultural product quality classification, and agricultural product type classification are discussed. Ultimately, the future challenges of ion-selective electrode research are discussed from the perspectives of the sensor itself and algorithms combined with sensor arrays, which also positively impact the promotion of their application in agriculture. This work will advance the application of classification techniques combined with ion-selective electrode arrays in agriculture.
- 相关文献
作者其他论文 更多>>
-
Detection of maize seed viability using time series multispectral imaging technology
作者:Meng, Jingwu;Luo, Bin;Kang, Kai;Zhang, Han;Meng, Jingwu;Xia, Yu
关键词:Multispectral; Time series; Ensemble learning; Stochastic subspace; Maize seed viability
-
Data fusion-driven hyperspectral imaging for non-destructive detection of single maize seed vigor
作者:Shi, Rui;Zhang, Han;Wang, Cheng;Zhou, Yanan;Kang, Kai;Luo, Bin;Shi, Rui;Wang, Cheng;Luo, Bin
关键词:Hyperspectral imaging; Maize seed; Vigor detection; Single; Data fusion
-
Flexible sensor based on molecular imprinting for simultaneous in situ detection of indole-3-acetic acid and salicylic acid in plants
作者:Liu, Ke;Chen, Liping;Zhao, Chunjiang;Liu, Ke;Hou, Peichen;Pan, Dayu;Zhou, Yanan;Luo, Bin;Chen, Liping;Zhao, Chunjiang;Li, Aixue
关键词:Molecularly imprinted polymer; In situ; MXene; Laser-induced graphene; Flexible sensor; Electrochemical biosensor
-
Glutathione S-transferase in mediating adaptive responses of oats (Avena sativa) to osmotic and cadmium stress: genome-wide analysis
作者:Xu, Chenbiao;Jiang, Lyu;Li, Aixue;Meng, Jie;Chen, Yang;Zhang, Han;Gao, Quan;Luo, Bin;Hou, Peichen;Xu, Chenbiao;Jiang, Lyu;Li, Aixue;Meng, Jie;Chen, Yang;Zhang, Han;Gao, Quan;Luo, Bin;Hou, Peichen;Xu, Chenbiao;Li, Jianfang;Yun, Ping;Shabala, Lana;Shabala, Sergey;Shabala, Lana;Shabala, Sergey;Ahmed, Hassan Ahmed Ibraheem;Meng, Jie;Liu, Changbin
关键词:
GST genes; Phylogenetic analysis; Osmotic stress; Cadmium stress; ROS -
Ultrasensitive molecularly imprinted electrochemical sensor for in situ determination of serine in plants
作者:Wang, Yueyue;Hou, Peichen;Dong, Shaohua;Yu, Wenxin;Liu, Tianyang;Luo, Bin;Li, Aixue
关键词:Molecularly imprinted polymer; Serine; In situ; Electrochemical sensor
-
Detection of Strigolactone-Treated wheat seeds via Dual-View hyperspectral data fusion and deep learning
作者:Gu, Ying;Chen, Liping;Gu, Ying;Feng, Guoqing;Zhang, Han;Hou, Peichen;Wang, Cheng;Chen, Liping;Luo, Bin
关键词:Hyperspectral imaging; Data fusion; Deep learning; Strigolactones; Convolutional neural network
-
Wheat Fusarium head blight severity grading using generative adversarial networks and semi-supervised segmentation
作者:Feng, Guoqing;Gu, Ying;Wang, Cheng;Luo, Bin;Feng, Guoqing;Wang, Cheng;Luo, Bin;Feng, Guoqing;Gu, Ying;Wang, Cheng;Luo, Bin;Zhang, Dongyan;Xu, Rui;Zhu, Zhanwang
关键词:Wheat Fusarium head blight; Image generation; Super-resolution reconstruction; Knowledge distillation; Semantic segmentation



